]> git.itanic.dy.fi Git - linux-stable/blob - drivers/nvdimm/pmem.c
pmem: fix a name collision
[linux-stable] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "btt.h"
31 #include "pfn.h"
32 #include "nd.h"
33
34 static struct device *to_dev(struct pmem_device *pmem)
35 {
36         /*
37          * nvdimm bus services need a 'dev' parameter, and we record the device
38          * at init in bb.dev.
39          */
40         return pmem->bb.dev;
41 }
42
43 static struct nd_region *to_region(struct pmem_device *pmem)
44 {
45         return to_nd_region(to_dev(pmem)->parent);
46 }
47
48 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset)
49 {
50         return pmem->phys_addr + offset;
51 }
52
53 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
54 {
55         return (offset - pmem->data_offset) >> SECTOR_SHIFT;
56 }
57
58 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
59 {
60         return (sector << SECTOR_SHIFT) + pmem->data_offset;
61 }
62
63 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
64                 unsigned int len)
65 {
66         phys_addr_t phys = pmem_to_phys(pmem, offset);
67         unsigned long pfn_start, pfn_end, pfn;
68
69         /* only pmem in the linear map supports HWPoison */
70         if (is_vmalloc_addr(pmem->virt_addr))
71                 return;
72
73         pfn_start = PHYS_PFN(phys);
74         pfn_end = pfn_start + PHYS_PFN(len);
75         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
76                 struct page *page = pfn_to_page(pfn);
77
78                 /*
79                  * Note, no need to hold a get_dev_pagemap() reference
80                  * here since we're in the driver I/O path and
81                  * outstanding I/O requests pin the dev_pagemap.
82                  */
83                 if (test_and_clear_pmem_poison(page))
84                         clear_mce_nospec(pfn);
85         }
86 }
87
88 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
89 {
90         if (blks == 0)
91                 return;
92         badblocks_clear(&pmem->bb, sector, blks);
93         if (pmem->bb_state)
94                 sysfs_notify_dirent(pmem->bb_state);
95 }
96
97 static long __pmem_clear_poison(struct pmem_device *pmem,
98                 phys_addr_t offset, unsigned int len)
99 {
100         phys_addr_t phys = pmem_to_phys(pmem, offset);
101         long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
102
103         if (cleared > 0) {
104                 pmem_mkpage_present(pmem, offset, cleared);
105                 arch_invalidate_pmem(pmem->virt_addr + offset, len);
106         }
107         return cleared;
108 }
109
110 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
111                 phys_addr_t offset, unsigned int len)
112 {
113         long cleared = __pmem_clear_poison(pmem, offset, len);
114
115         if (cleared < 0)
116                 return BLK_STS_IOERR;
117
118         pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
119         if (cleared < len)
120                 return BLK_STS_IOERR;
121         return BLK_STS_OK;
122 }
123
124 static void write_pmem(void *pmem_addr, struct page *page,
125                 unsigned int off, unsigned int len)
126 {
127         unsigned int chunk;
128         void *mem;
129
130         while (len) {
131                 mem = kmap_atomic(page);
132                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
133                 memcpy_flushcache(pmem_addr, mem + off, chunk);
134                 kunmap_atomic(mem);
135                 len -= chunk;
136                 off = 0;
137                 page++;
138                 pmem_addr += chunk;
139         }
140 }
141
142 static blk_status_t read_pmem(struct page *page, unsigned int off,
143                 void *pmem_addr, unsigned int len)
144 {
145         unsigned int chunk;
146         unsigned long rem;
147         void *mem;
148
149         while (len) {
150                 mem = kmap_atomic(page);
151                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
152                 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
153                 kunmap_atomic(mem);
154                 if (rem)
155                         return BLK_STS_IOERR;
156                 len -= chunk;
157                 off = 0;
158                 page++;
159                 pmem_addr += chunk;
160         }
161         return BLK_STS_OK;
162 }
163
164 static blk_status_t pmem_do_read(struct pmem_device *pmem,
165                         struct page *page, unsigned int page_off,
166                         sector_t sector, unsigned int len)
167 {
168         blk_status_t rc;
169         phys_addr_t pmem_off = to_offset(pmem, sector);
170         void *pmem_addr = pmem->virt_addr + pmem_off;
171
172         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
173                 return BLK_STS_IOERR;
174
175         rc = read_pmem(page, page_off, pmem_addr, len);
176         flush_dcache_page(page);
177         return rc;
178 }
179
180 static blk_status_t pmem_do_write(struct pmem_device *pmem,
181                         struct page *page, unsigned int page_off,
182                         sector_t sector, unsigned int len)
183 {
184         phys_addr_t pmem_off = to_offset(pmem, sector);
185         void *pmem_addr = pmem->virt_addr + pmem_off;
186
187         if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
188                 blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
189
190                 if (rc != BLK_STS_OK)
191                         return rc;
192         }
193
194         flush_dcache_page(page);
195         write_pmem(pmem_addr, page, page_off, len);
196
197         return BLK_STS_OK;
198 }
199
200 static void pmem_submit_bio(struct bio *bio)
201 {
202         int ret = 0;
203         blk_status_t rc = 0;
204         bool do_acct;
205         unsigned long start;
206         struct bio_vec bvec;
207         struct bvec_iter iter;
208         struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
209         struct nd_region *nd_region = to_region(pmem);
210
211         if (bio->bi_opf & REQ_PREFLUSH)
212                 ret = nvdimm_flush(nd_region, bio);
213
214         do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
215         if (do_acct)
216                 start = bio_start_io_acct(bio);
217         bio_for_each_segment(bvec, bio, iter) {
218                 if (op_is_write(bio_op(bio)))
219                         rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
220                                 iter.bi_sector, bvec.bv_len);
221                 else
222                         rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
223                                 iter.bi_sector, bvec.bv_len);
224                 if (rc) {
225                         bio->bi_status = rc;
226                         break;
227                 }
228         }
229         if (do_acct)
230                 bio_end_io_acct(bio, start);
231
232         if (bio->bi_opf & REQ_FUA)
233                 ret = nvdimm_flush(nd_region, bio);
234
235         if (ret)
236                 bio->bi_status = errno_to_blk_status(ret);
237
238         bio_endio(bio);
239 }
240
241 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
242                        struct page *page, unsigned int op)
243 {
244         struct pmem_device *pmem = bdev->bd_disk->private_data;
245         blk_status_t rc;
246
247         if (op_is_write(op))
248                 rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
249         else
250                 rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
251         /*
252          * The ->rw_page interface is subtle and tricky.  The core
253          * retries on any error, so we can only invoke page_endio() in
254          * the successful completion case.  Otherwise, we'll see crashes
255          * caused by double completion.
256          */
257         if (rc == 0)
258                 page_endio(page, op_is_write(op), 0);
259
260         return blk_status_to_errno(rc);
261 }
262
263 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
264 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
265                 long nr_pages, enum dax_access_mode mode, void **kaddr,
266                 pfn_t *pfn)
267 {
268         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
269         sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
270         unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
271         struct badblocks *bb = &pmem->bb;
272         sector_t first_bad;
273         int num_bad;
274
275         if (kaddr)
276                 *kaddr = pmem->virt_addr + offset;
277         if (pfn)
278                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
279
280         if (bb->count &&
281             badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
282                 long actual_nr;
283
284                 if (mode != DAX_RECOVERY_WRITE)
285                         return -EIO;
286
287                 /*
288                  * Set the recovery stride is set to kernel page size because
289                  * the underlying driver and firmware clear poison functions
290                  * don't appear to handle large chunk(such as 2MiB) reliably.
291                  */
292                 actual_nr = PHYS_PFN(
293                         PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
294                 dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
295                                 sector, nr_pages, first_bad, actual_nr);
296                 if (actual_nr)
297                         return actual_nr;
298                 return 1;
299         }
300
301         /*
302          * If badblocks are present but not in the range, limit known good range
303          * to the requested range.
304          */
305         if (bb->count)
306                 return nr_pages;
307         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
308 }
309
310 static const struct block_device_operations pmem_fops = {
311         .owner =                THIS_MODULE,
312         .submit_bio =           pmem_submit_bio,
313         .rw_page =              pmem_rw_page,
314 };
315
316 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
317                                     size_t nr_pages)
318 {
319         struct pmem_device *pmem = dax_get_private(dax_dev);
320
321         return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
322                                    PFN_PHYS(pgoff) >> SECTOR_SHIFT,
323                                    PAGE_SIZE));
324 }
325
326 static long pmem_dax_direct_access(struct dax_device *dax_dev,
327                 pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
328                 void **kaddr, pfn_t *pfn)
329 {
330         struct pmem_device *pmem = dax_get_private(dax_dev);
331
332         return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
333 }
334
335 /*
336  * The recovery write thread started out as a normal pwrite thread and
337  * when the filesystem was told about potential media error in the
338  * range, filesystem turns the normal pwrite to a dax_recovery_write.
339  *
340  * The recovery write consists of clearing media poison, clearing page
341  * HWPoison bit, reenable page-wide read-write permission, flush the
342  * caches and finally write.  A competing pread thread will be held
343  * off during the recovery process since data read back might not be
344  * valid, and this is achieved by clearing the badblock records after
345  * the recovery write is complete. Competing recovery write threads
346  * are already serialized by writer lock held by dax_iomap_rw().
347  */
348 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
349                 void *addr, size_t bytes, struct iov_iter *i)
350 {
351         struct pmem_device *pmem = dax_get_private(dax_dev);
352         size_t olen, len, off;
353         phys_addr_t pmem_off;
354         struct device *dev = pmem->bb.dev;
355         long cleared;
356
357         off = offset_in_page(addr);
358         len = PFN_PHYS(PFN_UP(off + bytes));
359         if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
360                 return _copy_from_iter_flushcache(addr, bytes, i);
361
362         /*
363          * Not page-aligned range cannot be recovered. This should not
364          * happen unless something else went wrong.
365          */
366         if (off || !PAGE_ALIGNED(bytes)) {
367                 dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
368                         addr, bytes);
369                 return 0;
370         }
371
372         pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
373         cleared = __pmem_clear_poison(pmem, pmem_off, len);
374         if (cleared > 0 && cleared < len) {
375                 dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
376                         cleared, len);
377                 return 0;
378         }
379         if (cleared < 0) {
380                 dev_dbg(dev, "poison clear failed: %ld\n", cleared);
381                 return 0;
382         }
383
384         olen = _copy_from_iter_flushcache(addr, bytes, i);
385         pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
386
387         return olen;
388 }
389
390 static const struct dax_operations pmem_dax_ops = {
391         .direct_access = pmem_dax_direct_access,
392         .zero_page_range = pmem_dax_zero_page_range,
393         .recovery_write = pmem_recovery_write,
394 };
395
396 static ssize_t write_cache_show(struct device *dev,
397                 struct device_attribute *attr, char *buf)
398 {
399         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
400
401         return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
402 }
403
404 static ssize_t write_cache_store(struct device *dev,
405                 struct device_attribute *attr, const char *buf, size_t len)
406 {
407         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
408         bool write_cache;
409         int rc;
410
411         rc = strtobool(buf, &write_cache);
412         if (rc)
413                 return rc;
414         dax_write_cache(pmem->dax_dev, write_cache);
415         return len;
416 }
417 static DEVICE_ATTR_RW(write_cache);
418
419 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
420 {
421 #ifndef CONFIG_ARCH_HAS_PMEM_API
422         if (a == &dev_attr_write_cache.attr)
423                 return 0;
424 #endif
425         return a->mode;
426 }
427
428 static struct attribute *dax_attributes[] = {
429         &dev_attr_write_cache.attr,
430         NULL,
431 };
432
433 static const struct attribute_group dax_attribute_group = {
434         .name           = "dax",
435         .attrs          = dax_attributes,
436         .is_visible     = dax_visible,
437 };
438
439 static const struct attribute_group *pmem_attribute_groups[] = {
440         &dax_attribute_group,
441         NULL,
442 };
443
444 static void pmem_release_disk(void *__pmem)
445 {
446         struct pmem_device *pmem = __pmem;
447
448         dax_remove_host(pmem->disk);
449         kill_dax(pmem->dax_dev);
450         put_dax(pmem->dax_dev);
451         del_gendisk(pmem->disk);
452
453         blk_cleanup_disk(pmem->disk);
454 }
455
456 static int pmem_attach_disk(struct device *dev,
457                 struct nd_namespace_common *ndns)
458 {
459         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
460         struct nd_region *nd_region = to_nd_region(dev->parent);
461         int nid = dev_to_node(dev), fua;
462         struct resource *res = &nsio->res;
463         struct range bb_range;
464         struct nd_pfn *nd_pfn = NULL;
465         struct dax_device *dax_dev;
466         struct nd_pfn_sb *pfn_sb;
467         struct pmem_device *pmem;
468         struct request_queue *q;
469         struct gendisk *disk;
470         void *addr;
471         int rc;
472
473         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
474         if (!pmem)
475                 return -ENOMEM;
476
477         rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
478         if (rc)
479                 return rc;
480
481         /* while nsio_rw_bytes is active, parse a pfn info block if present */
482         if (is_nd_pfn(dev)) {
483                 nd_pfn = to_nd_pfn(dev);
484                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
485                 if (rc)
486                         return rc;
487         }
488
489         /* we're attaching a block device, disable raw namespace access */
490         devm_namespace_disable(dev, ndns);
491
492         dev_set_drvdata(dev, pmem);
493         pmem->phys_addr = res->start;
494         pmem->size = resource_size(res);
495         fua = nvdimm_has_flush(nd_region);
496         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
497                 dev_warn(dev, "unable to guarantee persistence of writes\n");
498                 fua = 0;
499         }
500
501         if (!devm_request_mem_region(dev, res->start, resource_size(res),
502                                 dev_name(&ndns->dev))) {
503                 dev_warn(dev, "could not reserve region %pR\n", res);
504                 return -EBUSY;
505         }
506
507         disk = blk_alloc_disk(nid);
508         if (!disk)
509                 return -ENOMEM;
510         q = disk->queue;
511
512         pmem->disk = disk;
513         pmem->pgmap.owner = pmem;
514         pmem->pfn_flags = PFN_DEV;
515         if (is_nd_pfn(dev)) {
516                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
517                 addr = devm_memremap_pages(dev, &pmem->pgmap);
518                 pfn_sb = nd_pfn->pfn_sb;
519                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
520                 pmem->pfn_pad = resource_size(res) -
521                         range_len(&pmem->pgmap.range);
522                 pmem->pfn_flags |= PFN_MAP;
523                 bb_range = pmem->pgmap.range;
524                 bb_range.start += pmem->data_offset;
525         } else if (pmem_should_map_pages(dev)) {
526                 pmem->pgmap.range.start = res->start;
527                 pmem->pgmap.range.end = res->end;
528                 pmem->pgmap.nr_range = 1;
529                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
530                 addr = devm_memremap_pages(dev, &pmem->pgmap);
531                 pmem->pfn_flags |= PFN_MAP;
532                 bb_range = pmem->pgmap.range;
533         } else {
534                 addr = devm_memremap(dev, pmem->phys_addr,
535                                 pmem->size, ARCH_MEMREMAP_PMEM);
536                 bb_range.start =  res->start;
537                 bb_range.end = res->end;
538         }
539
540         if (IS_ERR(addr)) {
541                 rc = PTR_ERR(addr);
542                 goto out;
543         }
544         pmem->virt_addr = addr;
545
546         blk_queue_write_cache(q, true, fua);
547         blk_queue_physical_block_size(q, PAGE_SIZE);
548         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
549         blk_queue_max_hw_sectors(q, UINT_MAX);
550         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
551         if (pmem->pfn_flags & PFN_MAP)
552                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
553
554         disk->fops              = &pmem_fops;
555         disk->private_data      = pmem;
556         nvdimm_namespace_disk_name(ndns, disk->disk_name);
557         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
558                         / 512);
559         if (devm_init_badblocks(dev, &pmem->bb))
560                 return -ENOMEM;
561         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
562         disk->bb = &pmem->bb;
563
564         dax_dev = alloc_dax(pmem, &pmem_dax_ops);
565         if (IS_ERR(dax_dev)) {
566                 rc = PTR_ERR(dax_dev);
567                 goto out;
568         }
569         set_dax_nocache(dax_dev);
570         set_dax_nomc(dax_dev);
571         if (is_nvdimm_sync(nd_region))
572                 set_dax_synchronous(dax_dev);
573         rc = dax_add_host(dax_dev, disk);
574         if (rc)
575                 goto out_cleanup_dax;
576         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
577         pmem->dax_dev = dax_dev;
578
579         rc = device_add_disk(dev, disk, pmem_attribute_groups);
580         if (rc)
581                 goto out_remove_host;
582         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
583                 return -ENOMEM;
584
585         nvdimm_check_and_set_ro(disk);
586
587         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
588                                           "badblocks");
589         if (!pmem->bb_state)
590                 dev_warn(dev, "'badblocks' notification disabled\n");
591         return 0;
592
593 out_remove_host:
594         dax_remove_host(pmem->disk);
595 out_cleanup_dax:
596         kill_dax(pmem->dax_dev);
597         put_dax(pmem->dax_dev);
598 out:
599         blk_cleanup_disk(pmem->disk);
600         return rc;
601 }
602
603 static int nd_pmem_probe(struct device *dev)
604 {
605         int ret;
606         struct nd_namespace_common *ndns;
607
608         ndns = nvdimm_namespace_common_probe(dev);
609         if (IS_ERR(ndns))
610                 return PTR_ERR(ndns);
611
612         if (is_nd_btt(dev))
613                 return nvdimm_namespace_attach_btt(ndns);
614
615         if (is_nd_pfn(dev))
616                 return pmem_attach_disk(dev, ndns);
617
618         ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
619         if (ret)
620                 return ret;
621
622         ret = nd_btt_probe(dev, ndns);
623         if (ret == 0)
624                 return -ENXIO;
625
626         /*
627          * We have two failure conditions here, there is no
628          * info reserver block or we found a valid info reserve block
629          * but failed to initialize the pfn superblock.
630          *
631          * For the first case consider namespace as a raw pmem namespace
632          * and attach a disk.
633          *
634          * For the latter, consider this a success and advance the namespace
635          * seed.
636          */
637         ret = nd_pfn_probe(dev, ndns);
638         if (ret == 0)
639                 return -ENXIO;
640         else if (ret == -EOPNOTSUPP)
641                 return ret;
642
643         ret = nd_dax_probe(dev, ndns);
644         if (ret == 0)
645                 return -ENXIO;
646         else if (ret == -EOPNOTSUPP)
647                 return ret;
648
649         /* probe complete, attach handles namespace enabling */
650         devm_namespace_disable(dev, ndns);
651
652         return pmem_attach_disk(dev, ndns);
653 }
654
655 static void nd_pmem_remove(struct device *dev)
656 {
657         struct pmem_device *pmem = dev_get_drvdata(dev);
658
659         if (is_nd_btt(dev))
660                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
661         else {
662                 /*
663                  * Note, this assumes device_lock() context to not
664                  * race nd_pmem_notify()
665                  */
666                 sysfs_put(pmem->bb_state);
667                 pmem->bb_state = NULL;
668         }
669         nvdimm_flush(to_nd_region(dev->parent), NULL);
670 }
671
672 static void nd_pmem_shutdown(struct device *dev)
673 {
674         nvdimm_flush(to_nd_region(dev->parent), NULL);
675 }
676
677 static void pmem_revalidate_poison(struct device *dev)
678 {
679         struct nd_region *nd_region;
680         resource_size_t offset = 0, end_trunc = 0;
681         struct nd_namespace_common *ndns;
682         struct nd_namespace_io *nsio;
683         struct badblocks *bb;
684         struct range range;
685         struct kernfs_node *bb_state;
686
687         if (is_nd_btt(dev)) {
688                 struct nd_btt *nd_btt = to_nd_btt(dev);
689
690                 ndns = nd_btt->ndns;
691                 nd_region = to_nd_region(ndns->dev.parent);
692                 nsio = to_nd_namespace_io(&ndns->dev);
693                 bb = &nsio->bb;
694                 bb_state = NULL;
695         } else {
696                 struct pmem_device *pmem = dev_get_drvdata(dev);
697
698                 nd_region = to_region(pmem);
699                 bb = &pmem->bb;
700                 bb_state = pmem->bb_state;
701
702                 if (is_nd_pfn(dev)) {
703                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
704                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
705
706                         ndns = nd_pfn->ndns;
707                         offset = pmem->data_offset +
708                                         __le32_to_cpu(pfn_sb->start_pad);
709                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
710                 } else {
711                         ndns = to_ndns(dev);
712                 }
713
714                 nsio = to_nd_namespace_io(&ndns->dev);
715         }
716
717         range.start = nsio->res.start + offset;
718         range.end = nsio->res.end - end_trunc;
719         nvdimm_badblocks_populate(nd_region, bb, &range);
720         if (bb_state)
721                 sysfs_notify_dirent(bb_state);
722 }
723
724 static void pmem_revalidate_region(struct device *dev)
725 {
726         struct pmem_device *pmem;
727
728         if (is_nd_btt(dev)) {
729                 struct nd_btt *nd_btt = to_nd_btt(dev);
730                 struct btt *btt = nd_btt->btt;
731
732                 nvdimm_check_and_set_ro(btt->btt_disk);
733                 return;
734         }
735
736         pmem = dev_get_drvdata(dev);
737         nvdimm_check_and_set_ro(pmem->disk);
738 }
739
740 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
741 {
742         switch (event) {
743         case NVDIMM_REVALIDATE_POISON:
744                 pmem_revalidate_poison(dev);
745                 break;
746         case NVDIMM_REVALIDATE_REGION:
747                 pmem_revalidate_region(dev);
748                 break;
749         default:
750                 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
751                 break;
752         }
753 }
754
755 MODULE_ALIAS("pmem");
756 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
757 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
758 static struct nd_device_driver nd_pmem_driver = {
759         .probe = nd_pmem_probe,
760         .remove = nd_pmem_remove,
761         .notify = nd_pmem_notify,
762         .shutdown = nd_pmem_shutdown,
763         .drv = {
764                 .name = "nd_pmem",
765         },
766         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
767 };
768
769 module_nd_driver(nd_pmem_driver);
770
771 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
772 MODULE_LICENSE("GPL v2");