]> git.itanic.dy.fi Git - linux-stable/blob - drivers/usb/fotg210/fotg210-hcd.c
usb: fotg210-hcd: delete an incorrect bounds test
[linux-stable] / drivers / usb / fotg210 / fotg210-hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *         Feng-Hsin Chiang <john453@faraday-tech.com>
8  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36
37 #include <asm/byteorder.h>
38 #include <asm/irq.h>
39 #include <asm/unaligned.h>
40
41 #include "fotg210.h"
42
43 static const char hcd_name[] = "fotg210_hcd";
44
45 #undef FOTG210_URB_TRACE
46 #define FOTG210_STATS
47
48 /* magic numbers that can affect system performance */
49 #define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
50 #define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
51 #define FOTG210_TUNE_RL_TT      0
52 #define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
53 #define FOTG210_TUNE_MULT_TT    1
54
55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
56  * ms into the future (partly as a result of an old bug in the scheduling
57  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
58  * length of 512 frames instead of 256.
59  */
60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61
62 /* Initial IRQ latency:  faster than hw default */
63 static int log2_irq_thresh; /* 0 to 6 */
64 module_param(log2_irq_thresh, int, S_IRUGO);
65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66
67 /* initial park setting:  slower than hw default */
68 static unsigned park;
69 module_param(park, uint, S_IRUGO);
70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71
72 /* for link power management(LPM) feature */
73 static unsigned int hird;
74 module_param(hird, int, S_IRUGO);
75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76
77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78
79 #include "fotg210-hcd.h"
80
81 #define fotg210_dbg(fotg210, fmt, args...) \
82         dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_err(fotg210, fmt, args...) \
84         dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_info(fotg210, fmt, args...) \
86         dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 #define fotg210_warn(fotg210, fmt, args...) \
88         dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89
90 /* check the values in the HCSPARAMS register (host controller _Structural_
91  * parameters) see EHCI spec, Table 2-4 for each value
92  */
93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94 {
95         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96
97         fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98                         HCS_N_PORTS(params));
99 }
100
101 /* check the values in the HCCPARAMS register (host controller _Capability_
102  * parameters) see EHCI Spec, Table 2-5 for each value
103  */
104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105 {
106         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107
108         fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109                         params,
110                         HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111                         HCC_CANPARK(params) ? " park" : "");
112 }
113
114 static void __maybe_unused
115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116 {
117         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118                         hc32_to_cpup(fotg210, &qtd->hw_next),
119                         hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120                         hc32_to_cpup(fotg210, &qtd->hw_token),
121                         hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122         if (qtd->hw_buf[1])
123                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
124                                 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125                                 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126                                 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127                                 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 }
129
130 static void __maybe_unused
131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132 {
133         struct fotg210_qh_hw *hw = qh->hw;
134
135         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136                         hw->hw_next, hw->hw_info1, hw->hw_info2,
137                         hw->hw_current);
138
139         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 }
141
142 static void __maybe_unused
143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144 {
145         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146                         itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147                         itd->urb);
148
149         fotg210_dbg(fotg210,
150                         "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151                         hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152                         hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153                         hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154                         hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155                         hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156                         hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157                         hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158                         hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159
160         fotg210_dbg(fotg210,
161                         "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
162                         hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163                         hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164                         hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165                         hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166                         hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167                         hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168                         hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169
170         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
171                         itd->index[0], itd->index[1], itd->index[2],
172                         itd->index[3], itd->index[4], itd->index[5],
173                         itd->index[6], itd->index[7]);
174 }
175
176 static int __maybe_unused
177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178 {
179         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180                         label, label[0] ? " " : "", status,
181                         (status & STS_ASS) ? " Async" : "",
182                         (status & STS_PSS) ? " Periodic" : "",
183                         (status & STS_RECL) ? " Recl" : "",
184                         (status & STS_HALT) ? " Halt" : "",
185                         (status & STS_IAA) ? " IAA" : "",
186                         (status & STS_FATAL) ? " FATAL" : "",
187                         (status & STS_FLR) ? " FLR" : "",
188                         (status & STS_PCD) ? " PCD" : "",
189                         (status & STS_ERR) ? " ERR" : "",
190                         (status & STS_INT) ? " INT" : "");
191 }
192
193 static int __maybe_unused
194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195 {
196         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197                         label, label[0] ? " " : "", enable,
198                         (enable & STS_IAA) ? " IAA" : "",
199                         (enable & STS_FATAL) ? " FATAL" : "",
200                         (enable & STS_FLR) ? " FLR" : "",
201                         (enable & STS_PCD) ? " PCD" : "",
202                         (enable & STS_ERR) ? " ERR" : "",
203                         (enable & STS_INT) ? " INT" : "");
204 }
205
206 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207
208 static int dbg_command_buf(char *buf, unsigned len, const char *label,
209                 u32 command)
210 {
211         return scnprintf(buf, len,
212                         "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213                         label, label[0] ? " " : "", command,
214                         (command & CMD_PARK) ? " park" : "(park)",
215                         CMD_PARK_CNT(command),
216                         (command >> 16) & 0x3f,
217                         (command & CMD_IAAD) ? " IAAD" : "",
218                         (command & CMD_ASE) ? " Async" : "",
219                         (command & CMD_PSE) ? " Periodic" : "",
220                         fls_strings[(command >> 2) & 0x3],
221                         (command & CMD_RESET) ? " Reset" : "",
222                         (command & CMD_RUN) ? "RUN" : "HALT");
223 }
224
225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226                 u32 status)
227 {
228         char *sig;
229
230         /* signaling state */
231         switch (status & (3 << 10)) {
232         case 0 << 10:
233                 sig = "se0";
234                 break;
235         case 1 << 10:
236                 sig = "k";
237                 break; /* low speed */
238         case 2 << 10:
239                 sig = "j";
240                 break;
241         default:
242                 sig = "?";
243                 break;
244         }
245
246         scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247                         label, label[0] ? " " : "", port, status,
248                         status >> 25, /*device address */
249                         sig,
250                         (status & PORT_RESET) ? " RESET" : "",
251                         (status & PORT_SUSPEND) ? " SUSPEND" : "",
252                         (status & PORT_RESUME) ? " RESUME" : "",
253                         (status & PORT_PEC) ? " PEC" : "",
254                         (status & PORT_PE) ? " PE" : "",
255                         (status & PORT_CSC) ? " CSC" : "",
256                         (status & PORT_CONNECT) ? " CONNECT" : "");
257
258         return buf;
259 }
260
261 /* functions have the "wrong" filename when they're output... */
262 #define dbg_status(fotg210, label, status) {                    \
263         char _buf[80];                                          \
264         dbg_status_buf(_buf, sizeof(_buf), label, status);      \
265         fotg210_dbg(fotg210, "%s\n", _buf);                     \
266 }
267
268 #define dbg_cmd(fotg210, label, command) {                      \
269         char _buf[80];                                          \
270         dbg_command_buf(_buf, sizeof(_buf), label, command);    \
271         fotg210_dbg(fotg210, "%s\n", _buf);                     \
272 }
273
274 #define dbg_port(fotg210, label, port, status) {                               \
275         char _buf[80];                                                         \
276         fotg210_dbg(fotg210, "%s\n",                                           \
277                         dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 }
279
280 /* troubleshooting help: expose state in debugfs */
281 static int debug_async_open(struct inode *, struct file *);
282 static int debug_periodic_open(struct inode *, struct file *);
283 static int debug_registers_open(struct inode *, struct file *);
284 static int debug_async_open(struct inode *, struct file *);
285
286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287 static int debug_close(struct inode *, struct file *);
288
289 static const struct file_operations debug_async_fops = {
290         .owner          = THIS_MODULE,
291         .open           = debug_async_open,
292         .read           = debug_output,
293         .release        = debug_close,
294         .llseek         = default_llseek,
295 };
296 static const struct file_operations debug_periodic_fops = {
297         .owner          = THIS_MODULE,
298         .open           = debug_periodic_open,
299         .read           = debug_output,
300         .release        = debug_close,
301         .llseek         = default_llseek,
302 };
303 static const struct file_operations debug_registers_fops = {
304         .owner          = THIS_MODULE,
305         .open           = debug_registers_open,
306         .read           = debug_output,
307         .release        = debug_close,
308         .llseek         = default_llseek,
309 };
310
311 static struct dentry *fotg210_debug_root;
312
313 struct debug_buffer {
314         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
315         struct usb_bus *bus;
316         struct mutex mutex;     /* protect filling of buffer */
317         size_t count;           /* number of characters filled into buffer */
318         char *output_buf;
319         size_t alloc_size;
320 };
321
322 static inline char speed_char(u32 scratch)
323 {
324         switch (scratch & (3 << 12)) {
325         case QH_FULL_SPEED:
326                 return 'f';
327
328         case QH_LOW_SPEED:
329                 return 'l';
330
331         case QH_HIGH_SPEED:
332                 return 'h';
333
334         default:
335                 return '?';
336         }
337 }
338
339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340 {
341         __u32 v = hc32_to_cpu(fotg210, token);
342
343         if (v & QTD_STS_ACTIVE)
344                 return '*';
345         if (v & QTD_STS_HALT)
346                 return '-';
347         if (!IS_SHORT_READ(v))
348                 return ' ';
349         /* tries to advance through hw_alt_next */
350         return '/';
351 }
352
353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354                 char **nextp, unsigned *sizep)
355 {
356         u32 scratch;
357         u32 hw_curr;
358         struct fotg210_qtd *td;
359         unsigned temp;
360         unsigned size = *sizep;
361         char *next = *nextp;
362         char mark;
363         __le32 list_end = FOTG210_LIST_END(fotg210);
364         struct fotg210_qh_hw *hw = qh->hw;
365
366         if (hw->hw_qtd_next == list_end) /* NEC does this */
367                 mark = '@';
368         else
369                 mark = token_mark(fotg210, hw->hw_token);
370         if (mark == '/') { /* qh_alt_next controls qh advance? */
371                 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372                     fotg210->async->hw->hw_alt_next)
373                         mark = '#'; /* blocked */
374                 else if (hw->hw_alt_next == list_end)
375                         mark = '.'; /* use hw_qtd_next */
376                 /* else alt_next points to some other qtd */
377         }
378         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380         temp = scnprintf(next, size,
381                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382                         qh, scratch & 0x007f,
383                         speed_char(scratch),
384                         (scratch >> 8) & 0x000f,
385                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
387                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388                                 ? "data1" : "data0",
389                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390         size -= temp;
391         next += temp;
392
393         /* hc may be modifying the list as we read it ... */
394         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
396                 mark = ' ';
397                 if (hw_curr == td->qtd_dma)
398                         mark = '*';
399                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400                         mark = '+';
401                 else if (QTD_LENGTH(scratch)) {
402                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403                                 mark = '#';
404                         else if (td->hw_alt_next != list_end)
405                                 mark = '/';
406                 }
407                 temp = snprintf(next, size,
408                                 "\n\t%p%c%s len=%d %08x urb %p",
409                                 td, mark, ({ char *tmp;
410                                 switch ((scratch>>8)&0x03) {
411                                 case 0:
412                                         tmp = "out";
413                                         break;
414                                 case 1:
415                                         tmp = "in";
416                                         break;
417                                 case 2:
418                                         tmp = "setup";
419                                         break;
420                                 default:
421                                         tmp = "?";
422                                         break;
423                                  } tmp; }),
424                                 (scratch >> 16) & 0x7fff,
425                                 scratch,
426                                 td->urb);
427                 if (size < temp)
428                         temp = size;
429                 size -= temp;
430                 next += temp;
431         }
432
433         temp = snprintf(next, size, "\n");
434         if (size < temp)
435                 temp = size;
436
437         size -= temp;
438         next += temp;
439
440         *sizep = size;
441         *nextp = next;
442 }
443
444 static ssize_t fill_async_buffer(struct debug_buffer *buf)
445 {
446         struct usb_hcd *hcd;
447         struct fotg210_hcd *fotg210;
448         unsigned long flags;
449         unsigned temp, size;
450         char *next;
451         struct fotg210_qh *qh;
452
453         hcd = bus_to_hcd(buf->bus);
454         fotg210 = hcd_to_fotg210(hcd);
455         next = buf->output_buf;
456         size = buf->alloc_size;
457
458         *next = 0;
459
460         /* dumps a snapshot of the async schedule.
461          * usually empty except for long-term bulk reads, or head.
462          * one QH per line, and TDs we know about
463          */
464         spin_lock_irqsave(&fotg210->lock, flags);
465         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
466                         qh = qh->qh_next.qh)
467                 qh_lines(fotg210, qh, &next, &size);
468         if (fotg210->async_unlink && size > 0) {
469                 temp = scnprintf(next, size, "\nunlink =\n");
470                 size -= temp;
471                 next += temp;
472
473                 for (qh = fotg210->async_unlink; size > 0 && qh;
474                                 qh = qh->unlink_next)
475                         qh_lines(fotg210, qh, &next, &size);
476         }
477         spin_unlock_irqrestore(&fotg210->lock, flags);
478
479         return strlen(buf->output_buf);
480 }
481
482 /* count tds, get ep direction */
483 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
484                 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
485 {
486         u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
487         struct fotg210_qtd *qtd;
488         char *type = "";
489         unsigned temp = 0;
490
491         /* count tds, get ep direction */
492         list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
493                 temp++;
494                 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
495                 case 0:
496                         type = "out";
497                         continue;
498                 case 1:
499                         type = "in";
500                         continue;
501                 }
502         }
503
504         return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
505                         speed_char(scratch), scratch & 0x007f,
506                         (scratch >> 8) & 0x000f, type, qh->usecs,
507                         qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
508 }
509
510 #define DBG_SCHED_LIMIT 64
511 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
512 {
513         struct usb_hcd *hcd;
514         struct fotg210_hcd *fotg210;
515         unsigned long flags;
516         union fotg210_shadow p, *seen;
517         unsigned temp, size, seen_count;
518         char *next;
519         unsigned i;
520         __hc32 tag;
521
522         seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
523         if (!seen)
524                 return 0;
525
526         seen_count = 0;
527
528         hcd = bus_to_hcd(buf->bus);
529         fotg210 = hcd_to_fotg210(hcd);
530         next = buf->output_buf;
531         size = buf->alloc_size;
532
533         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
534         size -= temp;
535         next += temp;
536
537         /* dump a snapshot of the periodic schedule.
538          * iso changes, interrupt usually doesn't.
539          */
540         spin_lock_irqsave(&fotg210->lock, flags);
541         for (i = 0; i < fotg210->periodic_size; i++) {
542                 p = fotg210->pshadow[i];
543                 if (likely(!p.ptr))
544                         continue;
545
546                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
547
548                 temp = scnprintf(next, size, "%4d: ", i);
549                 size -= temp;
550                 next += temp;
551
552                 do {
553                         struct fotg210_qh_hw *hw;
554
555                         switch (hc32_to_cpu(fotg210, tag)) {
556                         case Q_TYPE_QH:
557                                 hw = p.qh->hw;
558                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
559                                                 p.qh->period,
560                                                 hc32_to_cpup(fotg210,
561                                                         &hw->hw_info2)
562                                                         /* uframe masks */
563                                                         & (QH_CMASK | QH_SMASK),
564                                                 p.qh);
565                                 size -= temp;
566                                 next += temp;
567                                 /* don't repeat what follows this qh */
568                                 for (temp = 0; temp < seen_count; temp++) {
569                                         if (seen[temp].ptr != p.ptr)
570                                                 continue;
571                                         if (p.qh->qh_next.ptr) {
572                                                 temp = scnprintf(next, size,
573                                                                 " ...");
574                                                 size -= temp;
575                                                 next += temp;
576                                         }
577                                         break;
578                                 }
579                                 /* show more info the first time around */
580                                 if (temp == seen_count) {
581                                         temp = output_buf_tds_dir(next,
582                                                         fotg210, hw,
583                                                         p.qh, size);
584
585                                         if (seen_count < DBG_SCHED_LIMIT)
586                                                 seen[seen_count++].qh = p.qh;
587                                 } else
588                                         temp = 0;
589                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
590                                 p = p.qh->qh_next;
591                                 break;
592                         case Q_TYPE_FSTN:
593                                 temp = scnprintf(next, size,
594                                                 " fstn-%8x/%p",
595                                                 p.fstn->hw_prev, p.fstn);
596                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
597                                 p = p.fstn->fstn_next;
598                                 break;
599                         case Q_TYPE_ITD:
600                                 temp = scnprintf(next, size,
601                                                 " itd/%p", p.itd);
602                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
603                                 p = p.itd->itd_next;
604                                 break;
605                         }
606                         size -= temp;
607                         next += temp;
608                 } while (p.ptr);
609
610                 temp = scnprintf(next, size, "\n");
611                 size -= temp;
612                 next += temp;
613         }
614         spin_unlock_irqrestore(&fotg210->lock, flags);
615         kfree(seen);
616
617         return buf->alloc_size - size;
618 }
619 #undef DBG_SCHED_LIMIT
620
621 static const char *rh_state_string(struct fotg210_hcd *fotg210)
622 {
623         switch (fotg210->rh_state) {
624         case FOTG210_RH_HALTED:
625                 return "halted";
626         case FOTG210_RH_SUSPENDED:
627                 return "suspended";
628         case FOTG210_RH_RUNNING:
629                 return "running";
630         case FOTG210_RH_STOPPING:
631                 return "stopping";
632         }
633         return "?";
634 }
635
636 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
637 {
638         struct usb_hcd *hcd;
639         struct fotg210_hcd *fotg210;
640         unsigned long flags;
641         unsigned temp, size, i;
642         char *next, scratch[80];
643         static const char fmt[] = "%*s\n";
644         static const char label[] = "";
645
646         hcd = bus_to_hcd(buf->bus);
647         fotg210 = hcd_to_fotg210(hcd);
648         next = buf->output_buf;
649         size = buf->alloc_size;
650
651         spin_lock_irqsave(&fotg210->lock, flags);
652
653         if (!HCD_HW_ACCESSIBLE(hcd)) {
654                 size = scnprintf(next, size,
655                                 "bus %s, device %s\n"
656                                 "%s\n"
657                                 "SUSPENDED(no register access)\n",
658                                 hcd->self.controller->bus->name,
659                                 dev_name(hcd->self.controller),
660                                 hcd->product_desc);
661                 goto done;
662         }
663
664         /* Capability Registers */
665         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
666                         &fotg210->caps->hc_capbase));
667         temp = scnprintf(next, size,
668                         "bus %s, device %s\n"
669                         "%s\n"
670                         "EHCI %x.%02x, rh state %s\n",
671                         hcd->self.controller->bus->name,
672                         dev_name(hcd->self.controller),
673                         hcd->product_desc,
674                         i >> 8, i & 0x0ff, rh_state_string(fotg210));
675         size -= temp;
676         next += temp;
677
678         /* FIXME interpret both types of params */
679         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
680         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
681         size -= temp;
682         next += temp;
683
684         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
685         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
686         size -= temp;
687         next += temp;
688
689         /* Operational Registers */
690         temp = dbg_status_buf(scratch, sizeof(scratch), label,
691                         fotg210_readl(fotg210, &fotg210->regs->status));
692         temp = scnprintf(next, size, fmt, temp, scratch);
693         size -= temp;
694         next += temp;
695
696         temp = dbg_command_buf(scratch, sizeof(scratch), label,
697                         fotg210_readl(fotg210, &fotg210->regs->command));
698         temp = scnprintf(next, size, fmt, temp, scratch);
699         size -= temp;
700         next += temp;
701
702         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
703                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
704         temp = scnprintf(next, size, fmt, temp, scratch);
705         size -= temp;
706         next += temp;
707
708         temp = scnprintf(next, size, "uframe %04x\n",
709                         fotg210_read_frame_index(fotg210));
710         size -= temp;
711         next += temp;
712
713         if (fotg210->async_unlink) {
714                 temp = scnprintf(next, size, "async unlink qh %p\n",
715                                 fotg210->async_unlink);
716                 size -= temp;
717                 next += temp;
718         }
719
720 #ifdef FOTG210_STATS
721         temp = scnprintf(next, size,
722                         "irq normal %ld err %ld iaa %ld(lost %ld)\n",
723                         fotg210->stats.normal, fotg210->stats.error,
724                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
725         size -= temp;
726         next += temp;
727
728         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
729                         fotg210->stats.complete, fotg210->stats.unlink);
730         size -= temp;
731         next += temp;
732 #endif
733
734 done:
735         spin_unlock_irqrestore(&fotg210->lock, flags);
736
737         return buf->alloc_size - size;
738 }
739
740 static struct debug_buffer
741 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
742 {
743         struct debug_buffer *buf;
744
745         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
746
747         if (buf) {
748                 buf->bus = bus;
749                 buf->fill_func = fill_func;
750                 mutex_init(&buf->mutex);
751                 buf->alloc_size = PAGE_SIZE;
752         }
753
754         return buf;
755 }
756
757 static int fill_buffer(struct debug_buffer *buf)
758 {
759         int ret = 0;
760
761         if (!buf->output_buf)
762                 buf->output_buf = vmalloc(buf->alloc_size);
763
764         if (!buf->output_buf) {
765                 ret = -ENOMEM;
766                 goto out;
767         }
768
769         ret = buf->fill_func(buf);
770
771         if (ret >= 0) {
772                 buf->count = ret;
773                 ret = 0;
774         }
775
776 out:
777         return ret;
778 }
779
780 static ssize_t debug_output(struct file *file, char __user *user_buf,
781                 size_t len, loff_t *offset)
782 {
783         struct debug_buffer *buf = file->private_data;
784         int ret = 0;
785
786         mutex_lock(&buf->mutex);
787         if (buf->count == 0) {
788                 ret = fill_buffer(buf);
789                 if (ret != 0) {
790                         mutex_unlock(&buf->mutex);
791                         goto out;
792                 }
793         }
794         mutex_unlock(&buf->mutex);
795
796         ret = simple_read_from_buffer(user_buf, len, offset,
797                         buf->output_buf, buf->count);
798
799 out:
800         return ret;
801
802 }
803
804 static int debug_close(struct inode *inode, struct file *file)
805 {
806         struct debug_buffer *buf = file->private_data;
807
808         if (buf) {
809                 vfree(buf->output_buf);
810                 kfree(buf);
811         }
812
813         return 0;
814 }
815 static int debug_async_open(struct inode *inode, struct file *file)
816 {
817         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
818
819         return file->private_data ? 0 : -ENOMEM;
820 }
821
822 static int debug_periodic_open(struct inode *inode, struct file *file)
823 {
824         struct debug_buffer *buf;
825
826         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
827         if (!buf)
828                 return -ENOMEM;
829
830         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
831         file->private_data = buf;
832         return 0;
833 }
834
835 static int debug_registers_open(struct inode *inode, struct file *file)
836 {
837         file->private_data = alloc_buffer(inode->i_private,
838                         fill_registers_buffer);
839
840         return file->private_data ? 0 : -ENOMEM;
841 }
842
843 static inline void create_debug_files(struct fotg210_hcd *fotg210)
844 {
845         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
846         struct dentry *root;
847
848         root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
849
850         debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
851         debugfs_create_file("periodic", S_IRUGO, root, bus,
852                             &debug_periodic_fops);
853         debugfs_create_file("registers", S_IRUGO, root, bus,
854                             &debug_registers_fops);
855 }
856
857 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
858 {
859         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860
861         debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
862 }
863
864 /* handshake - spin reading hc until handshake completes or fails
865  * @ptr: address of hc register to be read
866  * @mask: bits to look at in result of read
867  * @done: value of those bits when handshake succeeds
868  * @usec: timeout in microseconds
869  *
870  * Returns negative errno, or zero on success
871  *
872  * Success happens when the "mask" bits have the specified value (hardware
873  * handshake done).  There are two failure modes:  "usec" have passed (major
874  * hardware flakeout), or the register reads as all-ones (hardware removed).
875  *
876  * That last failure should_only happen in cases like physical cardbus eject
877  * before driver shutdown. But it also seems to be caused by bugs in cardbus
878  * bridge shutdown:  shutting down the bridge before the devices using it.
879  */
880 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881                 u32 mask, u32 done, int usec)
882 {
883         u32 result;
884         int ret;
885
886         ret = readl_poll_timeout_atomic(ptr, result,
887                                         ((result & mask) == done ||
888                                          result == U32_MAX), 1, usec);
889         if (result == U32_MAX)          /* card removed */
890                 return -ENODEV;
891
892         return ret;
893 }
894
895 /* Force HC to halt state from unknown (EHCI spec section 2.3).
896  * Must be called with interrupts enabled and the lock not held.
897  */
898 static int fotg210_halt(struct fotg210_hcd *fotg210)
899 {
900         u32 temp;
901
902         spin_lock_irq(&fotg210->lock);
903
904         /* disable any irqs left enabled by previous code */
905         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
906
907         /*
908          * This routine gets called during probe before fotg210->command
909          * has been initialized, so we can't rely on its value.
910          */
911         fotg210->command &= ~CMD_RUN;
912         temp = fotg210_readl(fotg210, &fotg210->regs->command);
913         temp &= ~(CMD_RUN | CMD_IAAD);
914         fotg210_writel(fotg210, temp, &fotg210->regs->command);
915
916         spin_unlock_irq(&fotg210->lock);
917         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
918
919         return handshake(fotg210, &fotg210->regs->status,
920                         STS_HALT, STS_HALT, 16 * 125);
921 }
922
923 /* Reset a non-running (STS_HALT == 1) controller.
924  * Must be called with interrupts enabled and the lock not held.
925  */
926 static int fotg210_reset(struct fotg210_hcd *fotg210)
927 {
928         int retval;
929         u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
930
931         /* If the EHCI debug controller is active, special care must be
932          * taken before and after a host controller reset
933          */
934         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
935                 fotg210->debug = NULL;
936
937         command |= CMD_RESET;
938         dbg_cmd(fotg210, "reset", command);
939         fotg210_writel(fotg210, command, &fotg210->regs->command);
940         fotg210->rh_state = FOTG210_RH_HALTED;
941         fotg210->next_statechange = jiffies;
942         retval = handshake(fotg210, &fotg210->regs->command,
943                         CMD_RESET, 0, 250 * 1000);
944
945         if (retval)
946                 return retval;
947
948         if (fotg210->debug)
949                 dbgp_external_startup(fotg210_to_hcd(fotg210));
950
951         fotg210->port_c_suspend = fotg210->suspended_ports =
952                         fotg210->resuming_ports = 0;
953         return retval;
954 }
955
956 /* Idle the controller (turn off the schedules).
957  * Must be called with interrupts enabled and the lock not held.
958  */
959 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
960 {
961         u32 temp;
962
963         if (fotg210->rh_state != FOTG210_RH_RUNNING)
964                 return;
965
966         /* wait for any schedule enables/disables to take effect */
967         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
968         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
969                         16 * 125);
970
971         /* then disable anything that's still active */
972         spin_lock_irq(&fotg210->lock);
973         fotg210->command &= ~(CMD_ASE | CMD_PSE);
974         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
975         spin_unlock_irq(&fotg210->lock);
976
977         /* hardware can take 16 microframes to turn off ... */
978         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
979                         16 * 125);
980 }
981
982 static void end_unlink_async(struct fotg210_hcd *fotg210);
983 static void unlink_empty_async(struct fotg210_hcd *fotg210);
984 static void fotg210_work(struct fotg210_hcd *fotg210);
985 static void start_unlink_intr(struct fotg210_hcd *fotg210,
986                               struct fotg210_qh *qh);
987 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
988
989 /* Set a bit in the USBCMD register */
990 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
991 {
992         fotg210->command |= bit;
993         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
994
995         /* unblock posted write */
996         fotg210_readl(fotg210, &fotg210->regs->command);
997 }
998
999 /* Clear a bit in the USBCMD register */
1000 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1001 {
1002         fotg210->command &= ~bit;
1003         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1004
1005         /* unblock posted write */
1006         fotg210_readl(fotg210, &fotg210->regs->command);
1007 }
1008
1009 /* EHCI timer support...  Now using hrtimers.
1010  *
1011  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1012  * the timer routine runs, it checks each possible event; events that are
1013  * currently enabled and whose expiration time has passed get handled.
1014  * The set of enabled events is stored as a collection of bitflags in
1015  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1016  * increasing delay values (ranging between 1 ms and 100 ms).
1017  *
1018  * Rather than implementing a sorted list or tree of all pending events,
1019  * we keep track only of the lowest-numbered pending event, in
1020  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1021  * expiration time is set to the timeout value for this event.
1022  *
1023  * As a result, events might not get handled right away; the actual delay
1024  * could be anywhere up to twice the requested delay.  This doesn't
1025  * matter, because none of the events are especially time-critical.  The
1026  * ones that matter most all have a delay of 1 ms, so they will be
1027  * handled after 2 ms at most, which is okay.  In addition to this, we
1028  * allow for an expiration range of 1 ms.
1029  */
1030
1031 /* Delay lengths for the hrtimer event types.
1032  * Keep this list sorted by delay length, in the same order as
1033  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1034  */
1035 static unsigned event_delays_ns[] = {
1036         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1037         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1038         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1039         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1040         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1041         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1042         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1043         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1044         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1045         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1046 };
1047
1048 /* Enable a pending hrtimer event */
1049 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1050                 bool resched)
1051 {
1052         ktime_t *timeout = &fotg210->hr_timeouts[event];
1053
1054         if (resched)
1055                 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1056         fotg210->enabled_hrtimer_events |= (1 << event);
1057
1058         /* Track only the lowest-numbered pending event */
1059         if (event < fotg210->next_hrtimer_event) {
1060                 fotg210->next_hrtimer_event = event;
1061                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1062                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1063         }
1064 }
1065
1066
1067 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1068 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1069 {
1070         unsigned actual, want;
1071
1072         /* Don't enable anything if the controller isn't running (e.g., died) */
1073         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1074                 return;
1075
1076         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1077         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1078
1079         if (want != actual) {
1080
1081                 /* Poll again later, but give up after about 20 ms */
1082                 if (fotg210->ASS_poll_count++ < 20) {
1083                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1084                                         true);
1085                         return;
1086                 }
1087                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1088                                 want, actual);
1089         }
1090         fotg210->ASS_poll_count = 0;
1091
1092         /* The status is up-to-date; restart or stop the schedule as needed */
1093         if (want == 0) {        /* Stopped */
1094                 if (fotg210->async_count > 0)
1095                         fotg210_set_command_bit(fotg210, CMD_ASE);
1096
1097         } else {                /* Running */
1098                 if (fotg210->async_count == 0) {
1099
1100                         /* Turn off the schedule after a while */
1101                         fotg210_enable_event(fotg210,
1102                                         FOTG210_HRTIMER_DISABLE_ASYNC,
1103                                         true);
1104                 }
1105         }
1106 }
1107
1108 /* Turn off the async schedule after a brief delay */
1109 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1110 {
1111         fotg210_clear_command_bit(fotg210, CMD_ASE);
1112 }
1113
1114
1115 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1116 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1117 {
1118         unsigned actual, want;
1119
1120         /* Don't do anything if the controller isn't running (e.g., died) */
1121         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1122                 return;
1123
1124         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1125         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1126
1127         if (want != actual) {
1128
1129                 /* Poll again later, but give up after about 20 ms */
1130                 if (fotg210->PSS_poll_count++ < 20) {
1131                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1132                                         true);
1133                         return;
1134                 }
1135                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1136                                 want, actual);
1137         }
1138         fotg210->PSS_poll_count = 0;
1139
1140         /* The status is up-to-date; restart or stop the schedule as needed */
1141         if (want == 0) {        /* Stopped */
1142                 if (fotg210->periodic_count > 0)
1143                         fotg210_set_command_bit(fotg210, CMD_PSE);
1144
1145         } else {                /* Running */
1146                 if (fotg210->periodic_count == 0) {
1147
1148                         /* Turn off the schedule after a while */
1149                         fotg210_enable_event(fotg210,
1150                                         FOTG210_HRTIMER_DISABLE_PERIODIC,
1151                                         true);
1152                 }
1153         }
1154 }
1155
1156 /* Turn off the periodic schedule after a brief delay */
1157 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1158 {
1159         fotg210_clear_command_bit(fotg210, CMD_PSE);
1160 }
1161
1162
1163 /* Poll the STS_HALT status bit; see when a dead controller stops */
1164 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1165 {
1166         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1167
1168                 /* Give up after a few milliseconds */
1169                 if (fotg210->died_poll_count++ < 5) {
1170                         /* Try again later */
1171                         fotg210_enable_event(fotg210,
1172                                         FOTG210_HRTIMER_POLL_DEAD, true);
1173                         return;
1174                 }
1175                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1176         }
1177
1178         /* Clean up the mess */
1179         fotg210->rh_state = FOTG210_RH_HALTED;
1180         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1181         fotg210_work(fotg210);
1182         end_unlink_async(fotg210);
1183
1184         /* Not in process context, so don't try to reset the controller */
1185 }
1186
1187
1188 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1189 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1190 {
1191         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1192
1193         /*
1194          * Process all the QHs on the intr_unlink list that were added
1195          * before the current unlink cycle began.  The list is in
1196          * temporal order, so stop when we reach the first entry in the
1197          * current cycle.  But if the root hub isn't running then
1198          * process all the QHs on the list.
1199          */
1200         fotg210->intr_unlinking = true;
1201         while (fotg210->intr_unlink) {
1202                 struct fotg210_qh *qh = fotg210->intr_unlink;
1203
1204                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1205                         break;
1206                 fotg210->intr_unlink = qh->unlink_next;
1207                 qh->unlink_next = NULL;
1208                 end_unlink_intr(fotg210, qh);
1209         }
1210
1211         /* Handle remaining entries later */
1212         if (fotg210->intr_unlink) {
1213                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1214                                 true);
1215                 ++fotg210->intr_unlink_cycle;
1216         }
1217         fotg210->intr_unlinking = false;
1218 }
1219
1220
1221 /* Start another free-iTDs/siTDs cycle */
1222 static void start_free_itds(struct fotg210_hcd *fotg210)
1223 {
1224         if (!(fotg210->enabled_hrtimer_events &
1225                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1226                 fotg210->last_itd_to_free = list_entry(
1227                                 fotg210->cached_itd_list.prev,
1228                                 struct fotg210_itd, itd_list);
1229                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1230         }
1231 }
1232
1233 /* Wait for controller to stop using old iTDs and siTDs */
1234 static void end_free_itds(struct fotg210_hcd *fotg210)
1235 {
1236         struct fotg210_itd *itd, *n;
1237
1238         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1239                 fotg210->last_itd_to_free = NULL;
1240
1241         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1242                 list_del(&itd->itd_list);
1243                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1244                 if (itd == fotg210->last_itd_to_free)
1245                         break;
1246         }
1247
1248         if (!list_empty(&fotg210->cached_itd_list))
1249                 start_free_itds(fotg210);
1250 }
1251
1252
1253 /* Handle lost (or very late) IAA interrupts */
1254 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1255 {
1256         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1257                 return;
1258
1259         /*
1260          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1261          * So we need this watchdog, but must protect it against both
1262          * (a) SMP races against real IAA firing and retriggering, and
1263          * (b) clean HC shutdown, when IAA watchdog was pending.
1264          */
1265         if (fotg210->async_iaa) {
1266                 u32 cmd, status;
1267
1268                 /* If we get here, IAA is *REALLY* late.  It's barely
1269                  * conceivable that the system is so busy that CMD_IAAD
1270                  * is still legitimately set, so let's be sure it's
1271                  * clear before we read STS_IAA.  (The HC should clear
1272                  * CMD_IAAD when it sets STS_IAA.)
1273                  */
1274                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1275
1276                 /*
1277                  * If IAA is set here it either legitimately triggered
1278                  * after the watchdog timer expired (_way_ late, so we'll
1279                  * still count it as lost) ... or a silicon erratum:
1280                  * - VIA seems to set IAA without triggering the IRQ;
1281                  * - IAAD potentially cleared without setting IAA.
1282                  */
1283                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1284                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1285                         INCR(fotg210->stats.lost_iaa);
1286                         fotg210_writel(fotg210, STS_IAA,
1287                                         &fotg210->regs->status);
1288                 }
1289
1290                 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1291                                 status, cmd);
1292                 end_unlink_async(fotg210);
1293         }
1294 }
1295
1296
1297 /* Enable the I/O watchdog, if appropriate */
1298 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1299 {
1300         /* Not needed if the controller isn't running or it's already enabled */
1301         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1302                         (fotg210->enabled_hrtimer_events &
1303                         BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1304                 return;
1305
1306         /*
1307          * Isochronous transfers always need the watchdog.
1308          * For other sorts we use it only if the flag is set.
1309          */
1310         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1311                         fotg210->async_count + fotg210->intr_count > 0))
1312                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1313                                 true);
1314 }
1315
1316
1317 /* Handler functions for the hrtimer event types.
1318  * Keep this array in the same order as the event types indexed by
1319  * enum fotg210_hrtimer_event in fotg210.h.
1320  */
1321 static void (*event_handlers[])(struct fotg210_hcd *) = {
1322         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1323         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1324         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1325         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1326         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1327         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1328         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1329         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1330         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1331         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1332 };
1333
1334 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1335 {
1336         struct fotg210_hcd *fotg210 =
1337                         container_of(t, struct fotg210_hcd, hrtimer);
1338         ktime_t now;
1339         unsigned long events;
1340         unsigned long flags;
1341         unsigned e;
1342
1343         spin_lock_irqsave(&fotg210->lock, flags);
1344
1345         events = fotg210->enabled_hrtimer_events;
1346         fotg210->enabled_hrtimer_events = 0;
1347         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1348
1349         /*
1350          * Check each pending event.  If its time has expired, handle
1351          * the event; otherwise re-enable it.
1352          */
1353         now = ktime_get();
1354         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1355                 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1356                         event_handlers[e](fotg210);
1357                 else
1358                         fotg210_enable_event(fotg210, e, false);
1359         }
1360
1361         spin_unlock_irqrestore(&fotg210->lock, flags);
1362         return HRTIMER_NORESTART;
1363 }
1364
1365 #define fotg210_bus_suspend NULL
1366 #define fotg210_bus_resume NULL
1367
1368 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1369                 u32 __iomem *status_reg, int port_status)
1370 {
1371         if (!(port_status & PORT_CONNECT))
1372                 return port_status;
1373
1374         /* if reset finished and it's still not enabled -- handoff */
1375         if (!(port_status & PORT_PE))
1376                 /* with integrated TT, there's nobody to hand it to! */
1377                 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1378                                 index + 1);
1379         else
1380                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1381                                 index + 1);
1382
1383         return port_status;
1384 }
1385
1386
1387 /* build "status change" packet (one or two bytes) from HC registers */
1388
1389 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1390 {
1391         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1392         u32 temp, status;
1393         u32 mask;
1394         int retval = 1;
1395         unsigned long flags;
1396
1397         /* init status to no-changes */
1398         buf[0] = 0;
1399
1400         /* Inform the core about resumes-in-progress by returning
1401          * a non-zero value even if there are no status changes.
1402          */
1403         status = fotg210->resuming_ports;
1404
1405         mask = PORT_CSC | PORT_PEC;
1406         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1407
1408         /* no hub change reports (bit 0) for now (power, ...) */
1409
1410         /* port N changes (bit N)? */
1411         spin_lock_irqsave(&fotg210->lock, flags);
1412
1413         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1414
1415         /*
1416          * Return status information even for ports with OWNER set.
1417          * Otherwise hub_wq wouldn't see the disconnect event when a
1418          * high-speed device is switched over to the companion
1419          * controller by the user.
1420          */
1421
1422         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1423                         (fotg210->reset_done[0] &&
1424                         time_after_eq(jiffies, fotg210->reset_done[0]))) {
1425                 buf[0] |= 1 << 1;
1426                 status = STS_PCD;
1427         }
1428         /* FIXME autosuspend idle root hubs */
1429         spin_unlock_irqrestore(&fotg210->lock, flags);
1430         return status ? retval : 0;
1431 }
1432
1433 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1434                 struct usb_hub_descriptor *desc)
1435 {
1436         int ports = HCS_N_PORTS(fotg210->hcs_params);
1437         u16 temp;
1438
1439         desc->bDescriptorType = USB_DT_HUB;
1440         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1441         desc->bHubContrCurrent = 0;
1442
1443         desc->bNbrPorts = ports;
1444         temp = 1 + (ports / 8);
1445         desc->bDescLength = 7 + 2 * temp;
1446
1447         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1448         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1449         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1450
1451         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1452         temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1453         desc->wHubCharacteristics = cpu_to_le16(temp);
1454 }
1455
1456 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1457                 u16 wIndex, char *buf, u16 wLength)
1458 {
1459         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1460         int ports = HCS_N_PORTS(fotg210->hcs_params);
1461         u32 __iomem *status_reg = &fotg210->regs->port_status;
1462         u32 temp, temp1, status;
1463         unsigned long flags;
1464         int retval = 0;
1465         unsigned selector;
1466
1467         /*
1468          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1469          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1470          * (track current state ourselves) ... blink for diagnostics,
1471          * power, "this is the one", etc.  EHCI spec supports this.
1472          */
1473
1474         spin_lock_irqsave(&fotg210->lock, flags);
1475         switch (typeReq) {
1476         case ClearHubFeature:
1477                 switch (wValue) {
1478                 case C_HUB_LOCAL_POWER:
1479                 case C_HUB_OVER_CURRENT:
1480                         /* no hub-wide feature/status flags */
1481                         break;
1482                 default:
1483                         goto error;
1484                 }
1485                 break;
1486         case ClearPortFeature:
1487                 if (!wIndex || wIndex > ports)
1488                         goto error;
1489                 wIndex--;
1490                 temp = fotg210_readl(fotg210, status_reg);
1491                 temp &= ~PORT_RWC_BITS;
1492
1493                 /*
1494                  * Even if OWNER is set, so the port is owned by the
1495                  * companion controller, hub_wq needs to be able to clear
1496                  * the port-change status bits (especially
1497                  * USB_PORT_STAT_C_CONNECTION).
1498                  */
1499
1500                 switch (wValue) {
1501                 case USB_PORT_FEAT_ENABLE:
1502                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1503                         break;
1504                 case USB_PORT_FEAT_C_ENABLE:
1505                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1506                         break;
1507                 case USB_PORT_FEAT_SUSPEND:
1508                         if (temp & PORT_RESET)
1509                                 goto error;
1510                         if (!(temp & PORT_SUSPEND))
1511                                 break;
1512                         if ((temp & PORT_PE) == 0)
1513                                 goto error;
1514
1515                         /* resume signaling for 20 msec */
1516                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1517                         fotg210->reset_done[wIndex] = jiffies
1518                                         + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1519                         break;
1520                 case USB_PORT_FEAT_C_SUSPEND:
1521                         clear_bit(wIndex, &fotg210->port_c_suspend);
1522                         break;
1523                 case USB_PORT_FEAT_C_CONNECTION:
1524                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1525                         break;
1526                 case USB_PORT_FEAT_C_OVER_CURRENT:
1527                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1528                                         &fotg210->regs->otgisr);
1529                         break;
1530                 case USB_PORT_FEAT_C_RESET:
1531                         /* GetPortStatus clears reset */
1532                         break;
1533                 default:
1534                         goto error;
1535                 }
1536                 fotg210_readl(fotg210, &fotg210->regs->command);
1537                 break;
1538         case GetHubDescriptor:
1539                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1540                                 buf);
1541                 break;
1542         case GetHubStatus:
1543                 /* no hub-wide feature/status flags */
1544                 memset(buf, 0, 4);
1545                 /*cpu_to_le32s ((u32 *) buf); */
1546                 break;
1547         case GetPortStatus:
1548                 if (!wIndex || wIndex > ports)
1549                         goto error;
1550                 wIndex--;
1551                 status = 0;
1552                 temp = fotg210_readl(fotg210, status_reg);
1553
1554                 /* wPortChange bits */
1555                 if (temp & PORT_CSC)
1556                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1557                 if (temp & PORT_PEC)
1558                         status |= USB_PORT_STAT_C_ENABLE << 16;
1559
1560                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1561                 if (temp1 & OTGISR_OVC)
1562                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1563
1564                 /* whoever resumes must GetPortStatus to complete it!! */
1565                 if (temp & PORT_RESUME) {
1566
1567                         /* Remote Wakeup received? */
1568                         if (!fotg210->reset_done[wIndex]) {
1569                                 /* resume signaling for 20 msec */
1570                                 fotg210->reset_done[wIndex] = jiffies
1571                                                 + msecs_to_jiffies(20);
1572                                 /* check the port again */
1573                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1574                                                 fotg210->reset_done[wIndex]);
1575                         }
1576
1577                         /* resume completed? */
1578                         else if (time_after_eq(jiffies,
1579                                         fotg210->reset_done[wIndex])) {
1580                                 clear_bit(wIndex, &fotg210->suspended_ports);
1581                                 set_bit(wIndex, &fotg210->port_c_suspend);
1582                                 fotg210->reset_done[wIndex] = 0;
1583
1584                                 /* stop resume signaling */
1585                                 temp = fotg210_readl(fotg210, status_reg);
1586                                 fotg210_writel(fotg210, temp &
1587                                                 ~(PORT_RWC_BITS | PORT_RESUME),
1588                                                 status_reg);
1589                                 clear_bit(wIndex, &fotg210->resuming_ports);
1590                                 retval = handshake(fotg210, status_reg,
1591                                                 PORT_RESUME, 0, 2000);/* 2ms */
1592                                 if (retval != 0) {
1593                                         fotg210_err(fotg210,
1594                                                         "port %d resume error %d\n",
1595                                                         wIndex + 1, retval);
1596                                         goto error;
1597                                 }
1598                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1599                         }
1600                 }
1601
1602                 /* whoever resets must GetPortStatus to complete it!! */
1603                 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1604                                 fotg210->reset_done[wIndex])) {
1605                         status |= USB_PORT_STAT_C_RESET << 16;
1606                         fotg210->reset_done[wIndex] = 0;
1607                         clear_bit(wIndex, &fotg210->resuming_ports);
1608
1609                         /* force reset to complete */
1610                         fotg210_writel(fotg210,
1611                                         temp & ~(PORT_RWC_BITS | PORT_RESET),
1612                                         status_reg);
1613                         /* REVISIT:  some hardware needs 550+ usec to clear
1614                          * this bit; seems too long to spin routinely...
1615                          */
1616                         retval = handshake(fotg210, status_reg,
1617                                         PORT_RESET, 0, 1000);
1618                         if (retval != 0) {
1619                                 fotg210_err(fotg210, "port %d reset error %d\n",
1620                                                 wIndex + 1, retval);
1621                                 goto error;
1622                         }
1623
1624                         /* see what we found out */
1625                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1626                                         fotg210_readl(fotg210, status_reg));
1627
1628                         /* restart schedule */
1629                         fotg210->command |= CMD_RUN;
1630                         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1631                 }
1632
1633                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1634                         fotg210->reset_done[wIndex] = 0;
1635                         clear_bit(wIndex, &fotg210->resuming_ports);
1636                 }
1637
1638                 /* transfer dedicated ports to the companion hc */
1639                 if ((temp & PORT_CONNECT) &&
1640                                 test_bit(wIndex, &fotg210->companion_ports)) {
1641                         temp &= ~PORT_RWC_BITS;
1642                         fotg210_writel(fotg210, temp, status_reg);
1643                         fotg210_dbg(fotg210, "port %d --> companion\n",
1644                                         wIndex + 1);
1645                         temp = fotg210_readl(fotg210, status_reg);
1646                 }
1647
1648                 /*
1649                  * Even if OWNER is set, there's no harm letting hub_wq
1650                  * see the wPortStatus values (they should all be 0 except
1651                  * for PORT_POWER anyway).
1652                  */
1653
1654                 if (temp & PORT_CONNECT) {
1655                         status |= USB_PORT_STAT_CONNECTION;
1656                         status |= fotg210_port_speed(fotg210, temp);
1657                 }
1658                 if (temp & PORT_PE)
1659                         status |= USB_PORT_STAT_ENABLE;
1660
1661                 /* maybe the port was unsuspended without our knowledge */
1662                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1663                         status |= USB_PORT_STAT_SUSPEND;
1664                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1665                         clear_bit(wIndex, &fotg210->suspended_ports);
1666                         clear_bit(wIndex, &fotg210->resuming_ports);
1667                         fotg210->reset_done[wIndex] = 0;
1668                         if (temp & PORT_PE)
1669                                 set_bit(wIndex, &fotg210->port_c_suspend);
1670                 }
1671
1672                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1673                 if (temp1 & OTGISR_OVC)
1674                         status |= USB_PORT_STAT_OVERCURRENT;
1675                 if (temp & PORT_RESET)
1676                         status |= USB_PORT_STAT_RESET;
1677                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1678                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1679
1680                 if (status & ~0xffff)   /* only if wPortChange is interesting */
1681                         dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1682                 put_unaligned_le32(status, buf);
1683                 break;
1684         case SetHubFeature:
1685                 switch (wValue) {
1686                 case C_HUB_LOCAL_POWER:
1687                 case C_HUB_OVER_CURRENT:
1688                         /* no hub-wide feature/status flags */
1689                         break;
1690                 default:
1691                         goto error;
1692                 }
1693                 break;
1694         case SetPortFeature:
1695                 selector = wIndex >> 8;
1696                 wIndex &= 0xff;
1697
1698                 if (!wIndex || wIndex > ports)
1699                         goto error;
1700                 wIndex--;
1701                 temp = fotg210_readl(fotg210, status_reg);
1702                 temp &= ~PORT_RWC_BITS;
1703                 switch (wValue) {
1704                 case USB_PORT_FEAT_SUSPEND:
1705                         if ((temp & PORT_PE) == 0
1706                                         || (temp & PORT_RESET) != 0)
1707                                 goto error;
1708
1709                         /* After above check the port must be connected.
1710                          * Set appropriate bit thus could put phy into low power
1711                          * mode if we have hostpc feature
1712                          */
1713                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1714                                         status_reg);
1715                         set_bit(wIndex, &fotg210->suspended_ports);
1716                         break;
1717                 case USB_PORT_FEAT_RESET:
1718                         if (temp & PORT_RESUME)
1719                                 goto error;
1720                         /* line status bits may report this as low speed,
1721                          * which can be fine if this root hub has a
1722                          * transaction translator built in.
1723                          */
1724                         fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1725                         temp |= PORT_RESET;
1726                         temp &= ~PORT_PE;
1727
1728                         /*
1729                          * caller must wait, then call GetPortStatus
1730                          * usb 2.0 spec says 50 ms resets on root
1731                          */
1732                         fotg210->reset_done[wIndex] = jiffies
1733                                         + msecs_to_jiffies(50);
1734                         fotg210_writel(fotg210, temp, status_reg);
1735                         break;
1736
1737                 /* For downstream facing ports (these):  one hub port is put
1738                  * into test mode according to USB2 11.24.2.13, then the hub
1739                  * must be reset (which for root hub now means rmmod+modprobe,
1740                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1741                  * about the EHCI-specific stuff.
1742                  */
1743                 case USB_PORT_FEAT_TEST:
1744                         if (!selector || selector > 5)
1745                                 goto error;
1746                         spin_unlock_irqrestore(&fotg210->lock, flags);
1747                         fotg210_quiesce(fotg210);
1748                         spin_lock_irqsave(&fotg210->lock, flags);
1749
1750                         /* Put all enabled ports into suspend */
1751                         temp = fotg210_readl(fotg210, status_reg) &
1752                                 ~PORT_RWC_BITS;
1753                         if (temp & PORT_PE)
1754                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1755                                                 status_reg);
1756
1757                         spin_unlock_irqrestore(&fotg210->lock, flags);
1758                         fotg210_halt(fotg210);
1759                         spin_lock_irqsave(&fotg210->lock, flags);
1760
1761                         temp = fotg210_readl(fotg210, status_reg);
1762                         temp |= selector << 16;
1763                         fotg210_writel(fotg210, temp, status_reg);
1764                         break;
1765
1766                 default:
1767                         goto error;
1768                 }
1769                 fotg210_readl(fotg210, &fotg210->regs->command);
1770                 break;
1771
1772         default:
1773 error:
1774                 /* "stall" on error */
1775                 retval = -EPIPE;
1776         }
1777         spin_unlock_irqrestore(&fotg210->lock, flags);
1778         return retval;
1779 }
1780
1781 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1782                 int portnum)
1783 {
1784         return;
1785 }
1786
1787 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1788                 int portnum)
1789 {
1790         return 0;
1791 }
1792
1793 /* There's basically three types of memory:
1794  *      - data used only by the HCD ... kmalloc is fine
1795  *      - async and periodic schedules, shared by HC and HCD ... these
1796  *        need to use dma_pool or dma_alloc_coherent
1797  *      - driver buffers, read/written by HC ... single shot DMA mapped
1798  *
1799  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800  * No memory seen by this driver is pageable.
1801  */
1802
1803 /* Allocate the key transfer structures from the previously allocated pool */
1804 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1805                 struct fotg210_qtd *qtd, dma_addr_t dma)
1806 {
1807         memset(qtd, 0, sizeof(*qtd));
1808         qtd->qtd_dma = dma;
1809         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1810         qtd->hw_next = FOTG210_LIST_END(fotg210);
1811         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1812         INIT_LIST_HEAD(&qtd->qtd_list);
1813 }
1814
1815 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1816                 gfp_t flags)
1817 {
1818         struct fotg210_qtd *qtd;
1819         dma_addr_t dma;
1820
1821         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1822         if (qtd != NULL)
1823                 fotg210_qtd_init(fotg210, qtd, dma);
1824
1825         return qtd;
1826 }
1827
1828 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1829                 struct fotg210_qtd *qtd)
1830 {
1831         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1832 }
1833
1834
1835 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1836 {
1837         /* clean qtds first, and know this is not linked */
1838         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1839                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1840                 BUG();
1841         }
1842         if (qh->dummy)
1843                 fotg210_qtd_free(fotg210, qh->dummy);
1844         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1845         kfree(qh);
1846 }
1847
1848 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1849                 gfp_t flags)
1850 {
1851         struct fotg210_qh *qh;
1852         dma_addr_t dma;
1853
1854         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1855         if (!qh)
1856                 goto done;
1857         qh->hw = (struct fotg210_qh_hw *)
1858                 dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1859         if (!qh->hw)
1860                 goto fail;
1861         qh->qh_dma = dma;
1862         INIT_LIST_HEAD(&qh->qtd_list);
1863
1864         /* dummy td enables safe urb queuing */
1865         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1866         if (qh->dummy == NULL) {
1867                 fotg210_dbg(fotg210, "no dummy td\n");
1868                 goto fail1;
1869         }
1870 done:
1871         return qh;
1872 fail1:
1873         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1874 fail:
1875         kfree(qh);
1876         return NULL;
1877 }
1878
1879 /* The queue heads and transfer descriptors are managed from pools tied
1880  * to each of the "per device" structures.
1881  * This is the initialisation and cleanup code.
1882  */
1883
1884 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1885 {
1886         if (fotg210->async)
1887                 qh_destroy(fotg210, fotg210->async);
1888         fotg210->async = NULL;
1889
1890         if (fotg210->dummy)
1891                 qh_destroy(fotg210, fotg210->dummy);
1892         fotg210->dummy = NULL;
1893
1894         /* DMA consistent memory and pools */
1895         dma_pool_destroy(fotg210->qtd_pool);
1896         fotg210->qtd_pool = NULL;
1897
1898         dma_pool_destroy(fotg210->qh_pool);
1899         fotg210->qh_pool = NULL;
1900
1901         dma_pool_destroy(fotg210->itd_pool);
1902         fotg210->itd_pool = NULL;
1903
1904         if (fotg210->periodic)
1905                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1906                                 fotg210->periodic_size * sizeof(u32),
1907                                 fotg210->periodic, fotg210->periodic_dma);
1908         fotg210->periodic = NULL;
1909
1910         /* shadow periodic table */
1911         kfree(fotg210->pshadow);
1912         fotg210->pshadow = NULL;
1913 }
1914
1915 /* remember to add cleanup code (above) if you add anything here */
1916 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1917 {
1918         int i;
1919
1920         /* QTDs for control/bulk/intr transfers */
1921         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1922                         fotg210_to_hcd(fotg210)->self.controller,
1923                         sizeof(struct fotg210_qtd),
1924                         32 /* byte alignment (for hw parts) */,
1925                         4096 /* can't cross 4K */);
1926         if (!fotg210->qtd_pool)
1927                 goto fail;
1928
1929         /* QHs for control/bulk/intr transfers */
1930         fotg210->qh_pool = dma_pool_create("fotg210_qh",
1931                         fotg210_to_hcd(fotg210)->self.controller,
1932                         sizeof(struct fotg210_qh_hw),
1933                         32 /* byte alignment (for hw parts) */,
1934                         4096 /* can't cross 4K */);
1935         if (!fotg210->qh_pool)
1936                 goto fail;
1937
1938         fotg210->async = fotg210_qh_alloc(fotg210, flags);
1939         if (!fotg210->async)
1940                 goto fail;
1941
1942         /* ITD for high speed ISO transfers */
1943         fotg210->itd_pool = dma_pool_create("fotg210_itd",
1944                         fotg210_to_hcd(fotg210)->self.controller,
1945                         sizeof(struct fotg210_itd),
1946                         64 /* byte alignment (for hw parts) */,
1947                         4096 /* can't cross 4K */);
1948         if (!fotg210->itd_pool)
1949                 goto fail;
1950
1951         /* Hardware periodic table */
1952         fotg210->periodic =
1953                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1954                                 fotg210->periodic_size * sizeof(__le32),
1955                                 &fotg210->periodic_dma, 0);
1956         if (fotg210->periodic == NULL)
1957                 goto fail;
1958
1959         for (i = 0; i < fotg210->periodic_size; i++)
1960                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1961
1962         /* software shadow of hardware table */
1963         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1964                         flags);
1965         if (fotg210->pshadow != NULL)
1966                 return 0;
1967
1968 fail:
1969         fotg210_dbg(fotg210, "couldn't init memory\n");
1970         fotg210_mem_cleanup(fotg210);
1971         return -ENOMEM;
1972 }
1973 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1974  *
1975  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1976  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1977  * buffers needed for the larger number).  We use one QH per endpoint, queue
1978  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1979  *
1980  * ISO traffic uses "ISO TD" (itd) records, and (along with
1981  * interrupts) needs careful scheduling.  Performance improvements can be
1982  * an ongoing challenge.  That's in "ehci-sched.c".
1983  *
1984  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1985  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1986  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1987  * buffer low/full speed data so the host collects it at high speed.
1988  */
1989
1990 /* fill a qtd, returning how much of the buffer we were able to queue up */
1991 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1992                 dma_addr_t buf, size_t len, int token, int maxpacket)
1993 {
1994         int i, count;
1995         u64 addr = buf;
1996
1997         /* one buffer entry per 4K ... first might be short or unaligned */
1998         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1999         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2000         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2001         if (likely(len < count))                /* ... iff needed */
2002                 count = len;
2003         else {
2004                 buf +=  0x1000;
2005                 buf &= ~0x0fff;
2006
2007                 /* per-qtd limit: from 16K to 20K (best alignment) */
2008                 for (i = 1; count < len && i < 5; i++) {
2009                         addr = buf;
2010                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2011                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2012                                         (u32)(addr >> 32));
2013                         buf += 0x1000;
2014                         if ((count + 0x1000) < len)
2015                                 count += 0x1000;
2016                         else
2017                                 count = len;
2018                 }
2019
2020                 /* short packets may only terminate transfers */
2021                 if (count != len)
2022                         count -= (count % maxpacket);
2023         }
2024         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2025         qtd->length = count;
2026
2027         return count;
2028 }
2029
2030 static inline void qh_update(struct fotg210_hcd *fotg210,
2031                 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2032 {
2033         struct fotg210_qh_hw *hw = qh->hw;
2034
2035         /* writes to an active overlay are unsafe */
2036         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2037
2038         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2039         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2040
2041         /* Except for control endpoints, we make hardware maintain data
2042          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2043          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2044          * ever clear it.
2045          */
2046         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2047                 unsigned is_out, epnum;
2048
2049                 is_out = qh->is_out;
2050                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2051                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2052                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2053                         usb_settoggle(qh->dev, epnum, is_out, 1);
2054                 }
2055         }
2056
2057         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2058 }
2059
2060 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2061  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2062  * recovery (including urb dequeue) would need software changes to a QH...
2063  */
2064 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2065 {
2066         struct fotg210_qtd *qtd;
2067
2068         if (list_empty(&qh->qtd_list))
2069                 qtd = qh->dummy;
2070         else {
2071                 qtd = list_entry(qh->qtd_list.next,
2072                                 struct fotg210_qtd, qtd_list);
2073                 /*
2074                  * first qtd may already be partially processed.
2075                  * If we come here during unlink, the QH overlay region
2076                  * might have reference to the just unlinked qtd. The
2077                  * qtd is updated in qh_completions(). Update the QH
2078                  * overlay here.
2079                  */
2080                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2081                         qh->hw->hw_qtd_next = qtd->hw_next;
2082                         qtd = NULL;
2083                 }
2084         }
2085
2086         if (qtd)
2087                 qh_update(fotg210, qh, qtd);
2088 }
2089
2090 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2091
2092 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2093                 struct usb_host_endpoint *ep)
2094 {
2095         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2096         struct fotg210_qh *qh = ep->hcpriv;
2097         unsigned long flags;
2098
2099         spin_lock_irqsave(&fotg210->lock, flags);
2100         qh->clearing_tt = 0;
2101         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2102                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2103                 qh_link_async(fotg210, qh);
2104         spin_unlock_irqrestore(&fotg210->lock, flags);
2105 }
2106
2107 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2108                 struct fotg210_qh *qh, struct urb *urb, u32 token)
2109 {
2110
2111         /* If an async split transaction gets an error or is unlinked,
2112          * the TT buffer may be left in an indeterminate state.  We
2113          * have to clear the TT buffer.
2114          *
2115          * Note: this routine is never called for Isochronous transfers.
2116          */
2117         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2118                 struct usb_device *tt = urb->dev->tt->hub;
2119
2120                 dev_dbg(&tt->dev,
2121                                 "clear tt buffer port %d, a%d ep%d t%08x\n",
2122                                 urb->dev->ttport, urb->dev->devnum,
2123                                 usb_pipeendpoint(urb->pipe), token);
2124
2125                 if (urb->dev->tt->hub !=
2126                                 fotg210_to_hcd(fotg210)->self.root_hub) {
2127                         if (usb_hub_clear_tt_buffer(urb) == 0)
2128                                 qh->clearing_tt = 1;
2129                 }
2130         }
2131 }
2132
2133 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2134                 size_t length, u32 token)
2135 {
2136         int status = -EINPROGRESS;
2137
2138         /* count IN/OUT bytes, not SETUP (even short packets) */
2139         if (likely(QTD_PID(token) != 2))
2140                 urb->actual_length += length - QTD_LENGTH(token);
2141
2142         /* don't modify error codes */
2143         if (unlikely(urb->unlinked))
2144                 return status;
2145
2146         /* force cleanup after short read; not always an error */
2147         if (unlikely(IS_SHORT_READ(token)))
2148                 status = -EREMOTEIO;
2149
2150         /* serious "can't proceed" faults reported by the hardware */
2151         if (token & QTD_STS_HALT) {
2152                 if (token & QTD_STS_BABBLE) {
2153                         /* FIXME "must" disable babbling device's port too */
2154                         status = -EOVERFLOW;
2155                 /* CERR nonzero + halt --> stall */
2156                 } else if (QTD_CERR(token)) {
2157                         status = -EPIPE;
2158
2159                 /* In theory, more than one of the following bits can be set
2160                  * since they are sticky and the transaction is retried.
2161                  * Which to test first is rather arbitrary.
2162                  */
2163                 } else if (token & QTD_STS_MMF) {
2164                         /* fs/ls interrupt xfer missed the complete-split */
2165                         status = -EPROTO;
2166                 } else if (token & QTD_STS_DBE) {
2167                         status = (QTD_PID(token) == 1) /* IN ? */
2168                                 ? -ENOSR  /* hc couldn't read data */
2169                                 : -ECOMM; /* hc couldn't write data */
2170                 } else if (token & QTD_STS_XACT) {
2171                         /* timeout, bad CRC, wrong PID, etc */
2172                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2173                                         urb->dev->devpath,
2174                                         usb_pipeendpoint(urb->pipe),
2175                                         usb_pipein(urb->pipe) ? "in" : "out");
2176                         status = -EPROTO;
2177                 } else {        /* unknown */
2178                         status = -EPROTO;
2179                 }
2180
2181                 fotg210_dbg(fotg210,
2182                                 "dev%d ep%d%s qtd token %08x --> status %d\n",
2183                                 usb_pipedevice(urb->pipe),
2184                                 usb_pipeendpoint(urb->pipe),
2185                                 usb_pipein(urb->pipe) ? "in" : "out",
2186                                 token, status);
2187         }
2188
2189         return status;
2190 }
2191
2192 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2193                 int status)
2194 __releases(fotg210->lock)
2195 __acquires(fotg210->lock)
2196 {
2197         if (likely(urb->hcpriv != NULL)) {
2198                 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2199
2200                 /* S-mask in a QH means it's an interrupt urb */
2201                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2202
2203                         /* ... update hc-wide periodic stats (for usbfs) */
2204                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2205                 }
2206         }
2207
2208         if (unlikely(urb->unlinked)) {
2209                 INCR(fotg210->stats.unlink);
2210         } else {
2211                 /* report non-error and short read status as zero */
2212                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2213                         status = 0;
2214                 INCR(fotg210->stats.complete);
2215         }
2216
2217 #ifdef FOTG210_URB_TRACE
2218         fotg210_dbg(fotg210,
2219                         "%s %s urb %p ep%d%s status %d len %d/%d\n",
2220                         __func__, urb->dev->devpath, urb,
2221                         usb_pipeendpoint(urb->pipe),
2222                         usb_pipein(urb->pipe) ? "in" : "out",
2223                         status,
2224                         urb->actual_length, urb->transfer_buffer_length);
2225 #endif
2226
2227         /* complete() can reenter this HCD */
2228         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2229         spin_unlock(&fotg210->lock);
2230         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2231         spin_lock(&fotg210->lock);
2232 }
2233
2234 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2235
2236 /* Process and free completed qtds for a qh, returning URBs to drivers.
2237  * Chases up to qh->hw_current.  Returns number of completions called,
2238  * indicating how much "real" work we did.
2239  */
2240 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2241                 struct fotg210_qh *qh)
2242 {
2243         struct fotg210_qtd *last, *end = qh->dummy;
2244         struct fotg210_qtd *qtd, *tmp;
2245         int last_status;
2246         int stopped;
2247         unsigned count = 0;
2248         u8 state;
2249         struct fotg210_qh_hw *hw = qh->hw;
2250
2251         if (unlikely(list_empty(&qh->qtd_list)))
2252                 return count;
2253
2254         /* completions (or tasks on other cpus) must never clobber HALT
2255          * till we've gone through and cleaned everything up, even when
2256          * they add urbs to this qh's queue or mark them for unlinking.
2257          *
2258          * NOTE:  unlinking expects to be done in queue order.
2259          *
2260          * It's a bug for qh->qh_state to be anything other than
2261          * QH_STATE_IDLE, unless our caller is scan_async() or
2262          * scan_intr().
2263          */
2264         state = qh->qh_state;
2265         qh->qh_state = QH_STATE_COMPLETING;
2266         stopped = (state == QH_STATE_IDLE);
2267
2268 rescan:
2269         last = NULL;
2270         last_status = -EINPROGRESS;
2271         qh->needs_rescan = 0;
2272
2273         /* remove de-activated QTDs from front of queue.
2274          * after faults (including short reads), cleanup this urb
2275          * then let the queue advance.
2276          * if queue is stopped, handles unlinks.
2277          */
2278         list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2279                 struct urb *urb;
2280                 u32 token = 0;
2281
2282                 urb = qtd->urb;
2283
2284                 /* clean up any state from previous QTD ...*/
2285                 if (last) {
2286                         if (likely(last->urb != urb)) {
2287                                 fotg210_urb_done(fotg210, last->urb,
2288                                                 last_status);
2289                                 count++;
2290                                 last_status = -EINPROGRESS;
2291                         }
2292                         fotg210_qtd_free(fotg210, last);
2293                         last = NULL;
2294                 }
2295
2296                 /* ignore urbs submitted during completions we reported */
2297                 if (qtd == end)
2298                         break;
2299
2300                 /* hardware copies qtd out of qh overlay */
2301                 rmb();
2302                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2303
2304                 /* always clean up qtds the hc de-activated */
2305 retry_xacterr:
2306                 if ((token & QTD_STS_ACTIVE) == 0) {
2307
2308                         /* Report Data Buffer Error: non-fatal but useful */
2309                         if (token & QTD_STS_DBE)
2310                                 fotg210_dbg(fotg210,
2311                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2312                                         urb, usb_endpoint_num(&urb->ep->desc),
2313                                         usb_endpoint_dir_in(&urb->ep->desc)
2314                                                 ? "in" : "out",
2315                                         urb->transfer_buffer_length, qtd, qh);
2316
2317                         /* on STALL, error, and short reads this urb must
2318                          * complete and all its qtds must be recycled.
2319                          */
2320                         if ((token & QTD_STS_HALT) != 0) {
2321
2322                                 /* retry transaction errors until we
2323                                  * reach the software xacterr limit
2324                                  */
2325                                 if ((token & QTD_STS_XACT) &&
2326                                                 QTD_CERR(token) == 0 &&
2327                                                 ++qh->xacterrs < QH_XACTERR_MAX &&
2328                                                 !urb->unlinked) {
2329                                         fotg210_dbg(fotg210,
2330                                                 "detected XactErr len %zu/%zu retry %d\n",
2331                                                 qtd->length - QTD_LENGTH(token),
2332                                                 qtd->length,
2333                                                 qh->xacterrs);
2334
2335                                         /* reset the token in the qtd and the
2336                                          * qh overlay (which still contains
2337                                          * the qtd) so that we pick up from
2338                                          * where we left off
2339                                          */
2340                                         token &= ~QTD_STS_HALT;
2341                                         token |= QTD_STS_ACTIVE |
2342                                                  (FOTG210_TUNE_CERR << 10);
2343                                         qtd->hw_token = cpu_to_hc32(fotg210,
2344                                                         token);
2345                                         wmb();
2346                                         hw->hw_token = cpu_to_hc32(fotg210,
2347                                                         token);
2348                                         goto retry_xacterr;
2349                                 }
2350                                 stopped = 1;
2351
2352                         /* magic dummy for some short reads; qh won't advance.
2353                          * that silicon quirk can kick in with this dummy too.
2354                          *
2355                          * other short reads won't stop the queue, including
2356                          * control transfers (status stage handles that) or
2357                          * most other single-qtd reads ... the queue stops if
2358                          * URB_SHORT_NOT_OK was set so the driver submitting
2359                          * the urbs could clean it up.
2360                          */
2361                         } else if (IS_SHORT_READ(token) &&
2362                                         !(qtd->hw_alt_next &
2363                                         FOTG210_LIST_END(fotg210))) {
2364                                 stopped = 1;
2365                         }
2366
2367                 /* stop scanning when we reach qtds the hc is using */
2368                 } else if (likely(!stopped
2369                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2370                         break;
2371
2372                 /* scan the whole queue for unlinks whenever it stops */
2373                 } else {
2374                         stopped = 1;
2375
2376                         /* cancel everything if we halt, suspend, etc */
2377                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2378                                 last_status = -ESHUTDOWN;
2379
2380                         /* this qtd is active; skip it unless a previous qtd
2381                          * for its urb faulted, or its urb was canceled.
2382                          */
2383                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2384                                 continue;
2385
2386                         /* qh unlinked; token in overlay may be most current */
2387                         if (state == QH_STATE_IDLE &&
2388                                         cpu_to_hc32(fotg210, qtd->qtd_dma)
2389                                         == hw->hw_current) {
2390                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2391
2392                                 /* An unlink may leave an incomplete
2393                                  * async transaction in the TT buffer.
2394                                  * We have to clear it.
2395                                  */
2396                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2397                                                 token);
2398                         }
2399                 }
2400
2401                 /* unless we already know the urb's status, collect qtd status
2402                  * and update count of bytes transferred.  in common short read
2403                  * cases with only one data qtd (including control transfers),
2404                  * queue processing won't halt.  but with two or more qtds (for
2405                  * example, with a 32 KB transfer), when the first qtd gets a
2406                  * short read the second must be removed by hand.
2407                  */
2408                 if (last_status == -EINPROGRESS) {
2409                         last_status = qtd_copy_status(fotg210, urb,
2410                                         qtd->length, token);
2411                         if (last_status == -EREMOTEIO &&
2412                                         (qtd->hw_alt_next &
2413                                         FOTG210_LIST_END(fotg210)))
2414                                 last_status = -EINPROGRESS;
2415
2416                         /* As part of low/full-speed endpoint-halt processing
2417                          * we must clear the TT buffer (11.17.5).
2418                          */
2419                         if (unlikely(last_status != -EINPROGRESS &&
2420                                         last_status != -EREMOTEIO)) {
2421                                 /* The TT's in some hubs malfunction when they
2422                                  * receive this request following a STALL (they
2423                                  * stop sending isochronous packets).  Since a
2424                                  * STALL can't leave the TT buffer in a busy
2425                                  * state (if you believe Figures 11-48 - 11-51
2426                                  * in the USB 2.0 spec), we won't clear the TT
2427                                  * buffer in this case.  Strictly speaking this
2428                                  * is a violation of the spec.
2429                                  */
2430                                 if (last_status != -EPIPE)
2431                                         fotg210_clear_tt_buffer(fotg210, qh,
2432                                                         urb, token);
2433                         }
2434                 }
2435
2436                 /* if we're removing something not at the queue head,
2437                  * patch the hardware queue pointer.
2438                  */
2439                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2440                         last = list_entry(qtd->qtd_list.prev,
2441                                         struct fotg210_qtd, qtd_list);
2442                         last->hw_next = qtd->hw_next;
2443                 }
2444
2445                 /* remove qtd; it's recycled after possible urb completion */
2446                 list_del(&qtd->qtd_list);
2447                 last = qtd;
2448
2449                 /* reinit the xacterr counter for the next qtd */
2450                 qh->xacterrs = 0;
2451         }
2452
2453         /* last urb's completion might still need calling */
2454         if (likely(last != NULL)) {
2455                 fotg210_urb_done(fotg210, last->urb, last_status);
2456                 count++;
2457                 fotg210_qtd_free(fotg210, last);
2458         }
2459
2460         /* Do we need to rescan for URBs dequeued during a giveback? */
2461         if (unlikely(qh->needs_rescan)) {
2462                 /* If the QH is already unlinked, do the rescan now. */
2463                 if (state == QH_STATE_IDLE)
2464                         goto rescan;
2465
2466                 /* Otherwise we have to wait until the QH is fully unlinked.
2467                  * Our caller will start an unlink if qh->needs_rescan is
2468                  * set.  But if an unlink has already started, nothing needs
2469                  * to be done.
2470                  */
2471                 if (state != QH_STATE_LINKED)
2472                         qh->needs_rescan = 0;
2473         }
2474
2475         /* restore original state; caller must unlink or relink */
2476         qh->qh_state = state;
2477
2478         /* be sure the hardware's done with the qh before refreshing
2479          * it after fault cleanup, or recovering from silicon wrongly
2480          * overlaying the dummy qtd (which reduces DMA chatter).
2481          */
2482         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2483                 switch (state) {
2484                 case QH_STATE_IDLE:
2485                         qh_refresh(fotg210, qh);
2486                         break;
2487                 case QH_STATE_LINKED:
2488                         /* We won't refresh a QH that's linked (after the HC
2489                          * stopped the queue).  That avoids a race:
2490                          *  - HC reads first part of QH;
2491                          *  - CPU updates that first part and the token;
2492                          *  - HC reads rest of that QH, including token
2493                          * Result:  HC gets an inconsistent image, and then
2494                          * DMAs to/from the wrong memory (corrupting it).
2495                          *
2496                          * That should be rare for interrupt transfers,
2497                          * except maybe high bandwidth ...
2498                          */
2499
2500                         /* Tell the caller to start an unlink */
2501                         qh->needs_rescan = 1;
2502                         break;
2503                 /* otherwise, unlink already started */
2504                 }
2505         }
2506
2507         return count;
2508 }
2509
2510 /* reverse of qh_urb_transaction:  free a list of TDs.
2511  * used for cleanup after errors, before HC sees an URB's TDs.
2512  */
2513 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2514                 struct list_head *head)
2515 {
2516         struct fotg210_qtd *qtd, *temp;
2517
2518         list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2519                 list_del(&qtd->qtd_list);
2520                 fotg210_qtd_free(fotg210, qtd);
2521         }
2522 }
2523
2524 /* create a list of filled qtds for this URB; won't link into qh.
2525  */
2526 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2527                 struct urb *urb, struct list_head *head, gfp_t flags)
2528 {
2529         struct fotg210_qtd *qtd, *qtd_prev;
2530         dma_addr_t buf;
2531         int len, this_sg_len, maxpacket;
2532         int is_input;
2533         u32 token;
2534         int i;
2535         struct scatterlist *sg;
2536
2537         /*
2538          * URBs map to sequences of QTDs:  one logical transaction
2539          */
2540         qtd = fotg210_qtd_alloc(fotg210, flags);
2541         if (unlikely(!qtd))
2542                 return NULL;
2543         list_add_tail(&qtd->qtd_list, head);
2544         qtd->urb = urb;
2545
2546         token = QTD_STS_ACTIVE;
2547         token |= (FOTG210_TUNE_CERR << 10);
2548         /* for split transactions, SplitXState initialized to zero */
2549
2550         len = urb->transfer_buffer_length;
2551         is_input = usb_pipein(urb->pipe);
2552         if (usb_pipecontrol(urb->pipe)) {
2553                 /* SETUP pid */
2554                 qtd_fill(fotg210, qtd, urb->setup_dma,
2555                                 sizeof(struct usb_ctrlrequest),
2556                                 token | (2 /* "setup" */ << 8), 8);
2557
2558                 /* ... and always at least one more pid */
2559                 token ^= QTD_TOGGLE;
2560                 qtd_prev = qtd;
2561                 qtd = fotg210_qtd_alloc(fotg210, flags);
2562                 if (unlikely(!qtd))
2563                         goto cleanup;
2564                 qtd->urb = urb;
2565                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2566                 list_add_tail(&qtd->qtd_list, head);
2567
2568                 /* for zero length DATA stages, STATUS is always IN */
2569                 if (len == 0)
2570                         token |= (1 /* "in" */ << 8);
2571         }
2572
2573         /*
2574          * data transfer stage:  buffer setup
2575          */
2576         i = urb->num_mapped_sgs;
2577         if (len > 0 && i > 0) {
2578                 sg = urb->sg;
2579                 buf = sg_dma_address(sg);
2580
2581                 /* urb->transfer_buffer_length may be smaller than the
2582                  * size of the scatterlist (or vice versa)
2583                  */
2584                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2585         } else {
2586                 sg = NULL;
2587                 buf = urb->transfer_dma;
2588                 this_sg_len = len;
2589         }
2590
2591         if (is_input)
2592                 token |= (1 /* "in" */ << 8);
2593         /* else it's already initted to "out" pid (0 << 8) */
2594
2595         maxpacket = usb_maxpacket(urb->dev, urb->pipe);
2596
2597         /*
2598          * buffer gets wrapped in one or more qtds;
2599          * last one may be "short" (including zero len)
2600          * and may serve as a control status ack
2601          */
2602         for (;;) {
2603                 int this_qtd_len;
2604
2605                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2606                                 maxpacket);
2607                 this_sg_len -= this_qtd_len;
2608                 len -= this_qtd_len;
2609                 buf += this_qtd_len;
2610
2611                 /*
2612                  * short reads advance to a "magic" dummy instead of the next
2613                  * qtd ... that forces the queue to stop, for manual cleanup.
2614                  * (this will usually be overridden later.)
2615                  */
2616                 if (is_input)
2617                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2618
2619                 /* qh makes control packets use qtd toggle; maybe switch it */
2620                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2621                         token ^= QTD_TOGGLE;
2622
2623                 if (likely(this_sg_len <= 0)) {
2624                         if (--i <= 0 || len <= 0)
2625                                 break;
2626                         sg = sg_next(sg);
2627                         buf = sg_dma_address(sg);
2628                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2629                 }
2630
2631                 qtd_prev = qtd;
2632                 qtd = fotg210_qtd_alloc(fotg210, flags);
2633                 if (unlikely(!qtd))
2634                         goto cleanup;
2635                 qtd->urb = urb;
2636                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2637                 list_add_tail(&qtd->qtd_list, head);
2638         }
2639
2640         /*
2641          * unless the caller requires manual cleanup after short reads,
2642          * have the alt_next mechanism keep the queue running after the
2643          * last data qtd (the only one, for control and most other cases).
2644          */
2645         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2646                         usb_pipecontrol(urb->pipe)))
2647                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2648
2649         /*
2650          * control requests may need a terminating data "status" ack;
2651          * other OUT ones may need a terminating short packet
2652          * (zero length).
2653          */
2654         if (likely(urb->transfer_buffer_length != 0)) {
2655                 int one_more = 0;
2656
2657                 if (usb_pipecontrol(urb->pipe)) {
2658                         one_more = 1;
2659                         token ^= 0x0100;        /* "in" <--> "out"  */
2660                         token |= QTD_TOGGLE;    /* force DATA1 */
2661                 } else if (usb_pipeout(urb->pipe)
2662                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2663                                 && !(urb->transfer_buffer_length % maxpacket)) {
2664                         one_more = 1;
2665                 }
2666                 if (one_more) {
2667                         qtd_prev = qtd;
2668                         qtd = fotg210_qtd_alloc(fotg210, flags);
2669                         if (unlikely(!qtd))
2670                                 goto cleanup;
2671                         qtd->urb = urb;
2672                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2673                         list_add_tail(&qtd->qtd_list, head);
2674
2675                         /* never any data in such packets */
2676                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2677                 }
2678         }
2679
2680         /* by default, enable interrupt on urb completion */
2681         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2682                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2683         return head;
2684
2685 cleanup:
2686         qtd_list_free(fotg210, urb, head);
2687         return NULL;
2688 }
2689
2690 /* Would be best to create all qh's from config descriptors,
2691  * when each interface/altsetting is established.  Unlink
2692  * any previous qh and cancel its urbs first; endpoints are
2693  * implicitly reset then (data toggle too).
2694  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2695  */
2696
2697
2698 /* Each QH holds a qtd list; a QH is used for everything except iso.
2699  *
2700  * For interrupt urbs, the scheduler must set the microframe scheduling
2701  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2702  * just one microframe in the s-mask.  For split interrupt transactions
2703  * there are additional complications: c-mask, maybe FSTNs.
2704  */
2705 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2706                 gfp_t flags)
2707 {
2708         struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2709         struct usb_host_endpoint *ep;
2710         u32 info1 = 0, info2 = 0;
2711         int is_input, type;
2712         int maxp = 0;
2713         int mult;
2714         struct usb_tt *tt = urb->dev->tt;
2715         struct fotg210_qh_hw *hw;
2716
2717         if (!qh)
2718                 return qh;
2719
2720         /*
2721          * init endpoint/device data for this QH
2722          */
2723         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2724         info1 |= usb_pipedevice(urb->pipe) << 0;
2725
2726         is_input = usb_pipein(urb->pipe);
2727         type = usb_pipetype(urb->pipe);
2728         ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2729         maxp = usb_endpoint_maxp(&ep->desc);
2730         mult = usb_endpoint_maxp_mult(&ep->desc);
2731
2732         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2733          * acts like up to 3KB, but is built from smaller packets.
2734          */
2735         if (maxp > 1024) {
2736                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2737                 goto done;
2738         }
2739
2740         /* Compute interrupt scheduling parameters just once, and save.
2741          * - allowing for high bandwidth, how many nsec/uframe are used?
2742          * - split transactions need a second CSPLIT uframe; same question
2743          * - splits also need a schedule gap (for full/low speed I/O)
2744          * - qh has a polling interval
2745          *
2746          * For control/bulk requests, the HC or TT handles these.
2747          */
2748         if (type == PIPE_INTERRUPT) {
2749                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2750                                 is_input, 0, mult * maxp));
2751                 qh->start = NO_FRAME;
2752
2753                 if (urb->dev->speed == USB_SPEED_HIGH) {
2754                         qh->c_usecs = 0;
2755                         qh->gap_uf = 0;
2756
2757                         qh->period = urb->interval >> 3;
2758                         if (qh->period == 0 && urb->interval != 1) {
2759                                 /* NOTE interval 2 or 4 uframes could work.
2760                                  * But interval 1 scheduling is simpler, and
2761                                  * includes high bandwidth.
2762                                  */
2763                                 urb->interval = 1;
2764                         } else if (qh->period > fotg210->periodic_size) {
2765                                 qh->period = fotg210->periodic_size;
2766                                 urb->interval = qh->period << 3;
2767                         }
2768                 } else {
2769                         int think_time;
2770
2771                         /* gap is f(FS/LS transfer times) */
2772                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2773                                         is_input, 0, maxp) / (125 * 1000);
2774
2775                         /* FIXME this just approximates SPLIT/CSPLIT times */
2776                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2777                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2778                                 qh->usecs = HS_USECS(1);
2779                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2780                                 qh->usecs += HS_USECS(1);
2781                                 qh->c_usecs = HS_USECS(0);
2782                         }
2783
2784                         think_time = tt ? tt->think_time : 0;
2785                         qh->tt_usecs = NS_TO_US(think_time +
2786                                         usb_calc_bus_time(urb->dev->speed,
2787                                         is_input, 0, maxp));
2788                         qh->period = urb->interval;
2789                         if (qh->period > fotg210->periodic_size) {
2790                                 qh->period = fotg210->periodic_size;
2791                                 urb->interval = qh->period;
2792                         }
2793                 }
2794         }
2795
2796         /* support for tt scheduling, and access to toggles */
2797         qh->dev = urb->dev;
2798
2799         /* using TT? */
2800         switch (urb->dev->speed) {
2801         case USB_SPEED_LOW:
2802                 info1 |= QH_LOW_SPEED;
2803                 fallthrough;
2804
2805         case USB_SPEED_FULL:
2806                 /* EPS 0 means "full" */
2807                 if (type != PIPE_INTERRUPT)
2808                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2809                 if (type == PIPE_CONTROL) {
2810                         info1 |= QH_CONTROL_EP;         /* for TT */
2811                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2812                 }
2813                 info1 |= maxp << 16;
2814
2815                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2816
2817                 /* Some Freescale processors have an erratum in which the
2818                  * port number in the queue head was 0..N-1 instead of 1..N.
2819                  */
2820                 if (fotg210_has_fsl_portno_bug(fotg210))
2821                         info2 |= (urb->dev->ttport-1) << 23;
2822                 else
2823                         info2 |= urb->dev->ttport << 23;
2824
2825                 /* set the address of the TT; for TDI's integrated
2826                  * root hub tt, leave it zeroed.
2827                  */
2828                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2829                         info2 |= tt->hub->devnum << 16;
2830
2831                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2832
2833                 break;
2834
2835         case USB_SPEED_HIGH:            /* no TT involved */
2836                 info1 |= QH_HIGH_SPEED;
2837                 if (type == PIPE_CONTROL) {
2838                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2839                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2840                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2841                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2842                 } else if (type == PIPE_BULK) {
2843                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2844                         /* The USB spec says that high speed bulk endpoints
2845                          * always use 512 byte maxpacket.  But some device
2846                          * vendors decided to ignore that, and MSFT is happy
2847                          * to help them do so.  So now people expect to use
2848                          * such nonconformant devices with Linux too; sigh.
2849                          */
2850                         info1 |= maxp << 16;
2851                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2852                 } else {                /* PIPE_INTERRUPT */
2853                         info1 |= maxp << 16;
2854                         info2 |= mult << 30;
2855                 }
2856                 break;
2857         default:
2858                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2859                                 urb->dev->speed);
2860 done:
2861                 qh_destroy(fotg210, qh);
2862                 return NULL;
2863         }
2864
2865         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2866
2867         /* init as live, toggle clear, advance to dummy */
2868         qh->qh_state = QH_STATE_IDLE;
2869         hw = qh->hw;
2870         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2871         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2872         qh->is_out = !is_input;
2873         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2874         qh_refresh(fotg210, qh);
2875         return qh;
2876 }
2877
2878 static void enable_async(struct fotg210_hcd *fotg210)
2879 {
2880         if (fotg210->async_count++)
2881                 return;
2882
2883         /* Stop waiting to turn off the async schedule */
2884         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2885
2886         /* Don't start the schedule until ASS is 0 */
2887         fotg210_poll_ASS(fotg210);
2888         turn_on_io_watchdog(fotg210);
2889 }
2890
2891 static void disable_async(struct fotg210_hcd *fotg210)
2892 {
2893         if (--fotg210->async_count)
2894                 return;
2895
2896         /* The async schedule and async_unlink list are supposed to be empty */
2897         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2898
2899         /* Don't turn off the schedule until ASS is 1 */
2900         fotg210_poll_ASS(fotg210);
2901 }
2902
2903 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2904
2905 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2906 {
2907         __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2908         struct fotg210_qh *head;
2909
2910         /* Don't link a QH if there's a Clear-TT-Buffer pending */
2911         if (unlikely(qh->clearing_tt))
2912                 return;
2913
2914         WARN_ON(qh->qh_state != QH_STATE_IDLE);
2915
2916         /* clear halt and/or toggle; and maybe recover from silicon quirk */
2917         qh_refresh(fotg210, qh);
2918
2919         /* splice right after start */
2920         head = fotg210->async;
2921         qh->qh_next = head->qh_next;
2922         qh->hw->hw_next = head->hw->hw_next;
2923         wmb();
2924
2925         head->qh_next.qh = qh;
2926         head->hw->hw_next = dma;
2927
2928         qh->xacterrs = 0;
2929         qh->qh_state = QH_STATE_LINKED;
2930         /* qtd completions reported later by interrupt */
2931
2932         enable_async(fotg210);
2933 }
2934
2935 /* For control/bulk/interrupt, return QH with these TDs appended.
2936  * Allocates and initializes the QH if necessary.
2937  * Returns null if it can't allocate a QH it needs to.
2938  * If the QH has TDs (urbs) already, that's great.
2939  */
2940 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2941                 struct urb *urb, struct list_head *qtd_list,
2942                 int epnum, void **ptr)
2943 {
2944         struct fotg210_qh *qh = NULL;
2945         __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2946
2947         qh = (struct fotg210_qh *) *ptr;
2948         if (unlikely(qh == NULL)) {
2949                 /* can't sleep here, we have fotg210->lock... */
2950                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2951                 *ptr = qh;
2952         }
2953         if (likely(qh != NULL)) {
2954                 struct fotg210_qtd *qtd;
2955
2956                 if (unlikely(list_empty(qtd_list)))
2957                         qtd = NULL;
2958                 else
2959                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2960                                         qtd_list);
2961
2962                 /* control qh may need patching ... */
2963                 if (unlikely(epnum == 0)) {
2964                         /* usb_reset_device() briefly reverts to address 0 */
2965                         if (usb_pipedevice(urb->pipe) == 0)
2966                                 qh->hw->hw_info1 &= ~qh_addr_mask;
2967                 }
2968
2969                 /* just one way to queue requests: swap with the dummy qtd.
2970                  * only hc or qh_refresh() ever modify the overlay.
2971                  */
2972                 if (likely(qtd != NULL)) {
2973                         struct fotg210_qtd *dummy;
2974                         dma_addr_t dma;
2975                         __hc32 token;
2976
2977                         /* to avoid racing the HC, use the dummy td instead of
2978                          * the first td of our list (becomes new dummy).  both
2979                          * tds stay deactivated until we're done, when the
2980                          * HC is allowed to fetch the old dummy (4.10.2).
2981                          */
2982                         token = qtd->hw_token;
2983                         qtd->hw_token = HALT_BIT(fotg210);
2984
2985                         dummy = qh->dummy;
2986
2987                         dma = dummy->qtd_dma;
2988                         *dummy = *qtd;
2989                         dummy->qtd_dma = dma;
2990
2991                         list_del(&qtd->qtd_list);
2992                         list_add(&dummy->qtd_list, qtd_list);
2993                         list_splice_tail(qtd_list, &qh->qtd_list);
2994
2995                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2996                         qh->dummy = qtd;
2997
2998                         /* hc must see the new dummy at list end */
2999                         dma = qtd->qtd_dma;
3000                         qtd = list_entry(qh->qtd_list.prev,
3001                                         struct fotg210_qtd, qtd_list);
3002                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3003
3004                         /* let the hc process these next qtds */
3005                         wmb();
3006                         dummy->hw_token = token;
3007
3008                         urb->hcpriv = qh;
3009                 }
3010         }
3011         return qh;
3012 }
3013
3014 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3015                 struct list_head *qtd_list, gfp_t mem_flags)
3016 {
3017         int epnum;
3018         unsigned long flags;
3019         struct fotg210_qh *qh = NULL;
3020         int rc;
3021
3022         epnum = urb->ep->desc.bEndpointAddress;
3023
3024 #ifdef FOTG210_URB_TRACE
3025         {
3026                 struct fotg210_qtd *qtd;
3027
3028                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3029                 fotg210_dbg(fotg210,
3030                                 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3031                                 __func__, urb->dev->devpath, urb,
3032                                 epnum & 0x0f, (epnum & USB_DIR_IN)
3033                                         ? "in" : "out",
3034                                 urb->transfer_buffer_length,
3035                                 qtd, urb->ep->hcpriv);
3036         }
3037 #endif
3038
3039         spin_lock_irqsave(&fotg210->lock, flags);
3040         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3041                 rc = -ESHUTDOWN;
3042                 goto done;
3043         }
3044         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3045         if (unlikely(rc))
3046                 goto done;
3047
3048         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3049         if (unlikely(qh == NULL)) {
3050                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3051                 rc = -ENOMEM;
3052                 goto done;
3053         }
3054
3055         /* Control/bulk operations through TTs don't need scheduling,
3056          * the HC and TT handle it when the TT has a buffer ready.
3057          */
3058         if (likely(qh->qh_state == QH_STATE_IDLE))
3059                 qh_link_async(fotg210, qh);
3060 done:
3061         spin_unlock_irqrestore(&fotg210->lock, flags);
3062         if (unlikely(qh == NULL))
3063                 qtd_list_free(fotg210, urb, qtd_list);
3064         return rc;
3065 }
3066
3067 static void single_unlink_async(struct fotg210_hcd *fotg210,
3068                 struct fotg210_qh *qh)
3069 {
3070         struct fotg210_qh *prev;
3071
3072         /* Add to the end of the list of QHs waiting for the next IAAD */
3073         qh->qh_state = QH_STATE_UNLINK;
3074         if (fotg210->async_unlink)
3075                 fotg210->async_unlink_last->unlink_next = qh;
3076         else
3077                 fotg210->async_unlink = qh;
3078         fotg210->async_unlink_last = qh;
3079
3080         /* Unlink it from the schedule */
3081         prev = fotg210->async;
3082         while (prev->qh_next.qh != qh)
3083                 prev = prev->qh_next.qh;
3084
3085         prev->hw->hw_next = qh->hw->hw_next;
3086         prev->qh_next = qh->qh_next;
3087         if (fotg210->qh_scan_next == qh)
3088                 fotg210->qh_scan_next = qh->qh_next.qh;
3089 }
3090
3091 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3092 {
3093         /*
3094          * Do nothing if an IAA cycle is already running or
3095          * if one will be started shortly.
3096          */
3097         if (fotg210->async_iaa || fotg210->async_unlinking)
3098                 return;
3099
3100         /* Do all the waiting QHs at once */
3101         fotg210->async_iaa = fotg210->async_unlink;
3102         fotg210->async_unlink = NULL;
3103
3104         /* If the controller isn't running, we don't have to wait for it */
3105         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3106                 if (!nested)            /* Avoid recursion */
3107                         end_unlink_async(fotg210);
3108
3109         /* Otherwise start a new IAA cycle */
3110         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3111                 /* Make sure the unlinks are all visible to the hardware */
3112                 wmb();
3113
3114                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3115                                 &fotg210->regs->command);
3116                 fotg210_readl(fotg210, &fotg210->regs->command);
3117                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3118                                 true);
3119         }
3120 }
3121
3122 /* the async qh for the qtds being unlinked are now gone from the HC */
3123
3124 static void end_unlink_async(struct fotg210_hcd *fotg210)
3125 {
3126         struct fotg210_qh *qh;
3127
3128         /* Process the idle QHs */
3129 restart:
3130         fotg210->async_unlinking = true;
3131         while (fotg210->async_iaa) {
3132                 qh = fotg210->async_iaa;
3133                 fotg210->async_iaa = qh->unlink_next;
3134                 qh->unlink_next = NULL;
3135
3136                 qh->qh_state = QH_STATE_IDLE;
3137                 qh->qh_next.qh = NULL;
3138
3139                 qh_completions(fotg210, qh);
3140                 if (!list_empty(&qh->qtd_list) &&
3141                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3142                         qh_link_async(fotg210, qh);
3143                 disable_async(fotg210);
3144         }
3145         fotg210->async_unlinking = false;
3146
3147         /* Start a new IAA cycle if any QHs are waiting for it */
3148         if (fotg210->async_unlink) {
3149                 start_iaa_cycle(fotg210, true);
3150                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3151                         goto restart;
3152         }
3153 }
3154
3155 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3156 {
3157         struct fotg210_qh *qh, *next;
3158         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3159         bool check_unlinks_later = false;
3160
3161         /* Unlink all the async QHs that have been empty for a timer cycle */
3162         next = fotg210->async->qh_next.qh;
3163         while (next) {
3164                 qh = next;
3165                 next = qh->qh_next.qh;
3166
3167                 if (list_empty(&qh->qtd_list) &&
3168                                 qh->qh_state == QH_STATE_LINKED) {
3169                         if (!stopped && qh->unlink_cycle ==
3170                                         fotg210->async_unlink_cycle)
3171                                 check_unlinks_later = true;
3172                         else
3173                                 single_unlink_async(fotg210, qh);
3174                 }
3175         }
3176
3177         /* Start a new IAA cycle if any QHs are waiting for it */
3178         if (fotg210->async_unlink)
3179                 start_iaa_cycle(fotg210, false);
3180
3181         /* QHs that haven't been empty for long enough will be handled later */
3182         if (check_unlinks_later) {
3183                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3184                                 true);
3185                 ++fotg210->async_unlink_cycle;
3186         }
3187 }
3188
3189 /* makes sure the async qh will become idle */
3190 /* caller must own fotg210->lock */
3191
3192 static void start_unlink_async(struct fotg210_hcd *fotg210,
3193                 struct fotg210_qh *qh)
3194 {
3195         /*
3196          * If the QH isn't linked then there's nothing we can do
3197          * unless we were called during a giveback, in which case
3198          * qh_completions() has to deal with it.
3199          */
3200         if (qh->qh_state != QH_STATE_LINKED) {
3201                 if (qh->qh_state == QH_STATE_COMPLETING)
3202                         qh->needs_rescan = 1;
3203                 return;
3204         }
3205
3206         single_unlink_async(fotg210, qh);
3207         start_iaa_cycle(fotg210, false);
3208 }
3209
3210 static void scan_async(struct fotg210_hcd *fotg210)
3211 {
3212         struct fotg210_qh *qh;
3213         bool check_unlinks_later = false;
3214
3215         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3216         while (fotg210->qh_scan_next) {
3217                 qh = fotg210->qh_scan_next;
3218                 fotg210->qh_scan_next = qh->qh_next.qh;
3219 rescan:
3220                 /* clean any finished work for this qh */
3221                 if (!list_empty(&qh->qtd_list)) {
3222                         int temp;
3223
3224                         /*
3225                          * Unlinks could happen here; completion reporting
3226                          * drops the lock.  That's why fotg210->qh_scan_next
3227                          * always holds the next qh to scan; if the next qh
3228                          * gets unlinked then fotg210->qh_scan_next is adjusted
3229                          * in single_unlink_async().
3230                          */
3231                         temp = qh_completions(fotg210, qh);
3232                         if (qh->needs_rescan) {
3233                                 start_unlink_async(fotg210, qh);
3234                         } else if (list_empty(&qh->qtd_list)
3235                                         && qh->qh_state == QH_STATE_LINKED) {
3236                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3237                                 check_unlinks_later = true;
3238                         } else if (temp != 0)
3239                                 goto rescan;
3240                 }
3241         }
3242
3243         /*
3244          * Unlink empty entries, reducing DMA usage as well
3245          * as HCD schedule-scanning costs.  Delay for any qh
3246          * we just scanned, there's a not-unusual case that it
3247          * doesn't stay idle for long.
3248          */
3249         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3250                         !(fotg210->enabled_hrtimer_events &
3251                         BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3252                 fotg210_enable_event(fotg210,
3253                                 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3254                 ++fotg210->async_unlink_cycle;
3255         }
3256 }
3257 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3258  * These are called "periodic" transactions in the EHCI spec.
3259  *
3260  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3261  * with the "asynchronous" transaction support (control/bulk transfers).
3262  * The only real difference is in how interrupt transfers are scheduled.
3263  *
3264  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3265  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3266  * pre-calculated schedule data to make appending to the queue be quick.
3267  */
3268 static int fotg210_get_frame(struct usb_hcd *hcd);
3269
3270 /* periodic_next_shadow - return "next" pointer on shadow list
3271  * @periodic: host pointer to qh/itd
3272  * @tag: hardware tag for type of this record
3273  */
3274 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3275                 union fotg210_shadow *periodic, __hc32 tag)
3276 {
3277         switch (hc32_to_cpu(fotg210, tag)) {
3278         case Q_TYPE_QH:
3279                 return &periodic->qh->qh_next;
3280         case Q_TYPE_FSTN:
3281                 return &periodic->fstn->fstn_next;
3282         default:
3283                 return &periodic->itd->itd_next;
3284         }
3285 }
3286
3287 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3288                 union fotg210_shadow *periodic, __hc32 tag)
3289 {
3290         switch (hc32_to_cpu(fotg210, tag)) {
3291         /* our fotg210_shadow.qh is actually software part */
3292         case Q_TYPE_QH:
3293                 return &periodic->qh->hw->hw_next;
3294         /* others are hw parts */
3295         default:
3296                 return periodic->hw_next;
3297         }
3298 }
3299
3300 /* caller must hold fotg210->lock */
3301 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3302                 void *ptr)
3303 {
3304         union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3305         __hc32 *hw_p = &fotg210->periodic[frame];
3306         union fotg210_shadow here = *prev_p;
3307
3308         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3309         while (here.ptr && here.ptr != ptr) {
3310                 prev_p = periodic_next_shadow(fotg210, prev_p,
3311                                 Q_NEXT_TYPE(fotg210, *hw_p));
3312                 hw_p = shadow_next_periodic(fotg210, &here,
3313                                 Q_NEXT_TYPE(fotg210, *hw_p));
3314                 here = *prev_p;
3315         }
3316         /* an interrupt entry (at list end) could have been shared */
3317         if (!here.ptr)
3318                 return;
3319
3320         /* update shadow and hardware lists ... the old "next" pointers
3321          * from ptr may still be in use, the caller updates them.
3322          */
3323         *prev_p = *periodic_next_shadow(fotg210, &here,
3324                         Q_NEXT_TYPE(fotg210, *hw_p));
3325
3326         *hw_p = *shadow_next_periodic(fotg210, &here,
3327                         Q_NEXT_TYPE(fotg210, *hw_p));
3328 }
3329
3330 /* how many of the uframe's 125 usecs are allocated? */
3331 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3332                 unsigned frame, unsigned uframe)
3333 {
3334         __hc32 *hw_p = &fotg210->periodic[frame];
3335         union fotg210_shadow *q = &fotg210->pshadow[frame];
3336         unsigned usecs = 0;
3337         struct fotg210_qh_hw *hw;
3338
3339         while (q->ptr) {
3340                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3341                 case Q_TYPE_QH:
3342                         hw = q->qh->hw;
3343                         /* is it in the S-mask? */
3344                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3345                                 usecs += q->qh->usecs;
3346                         /* ... or C-mask? */
3347                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3348                                         1 << (8 + uframe)))
3349                                 usecs += q->qh->c_usecs;
3350                         hw_p = &hw->hw_next;
3351                         q = &q->qh->qh_next;
3352                         break;
3353                 /* case Q_TYPE_FSTN: */
3354                 default:
3355                         /* for "save place" FSTNs, count the relevant INTR
3356                          * bandwidth from the previous frame
3357                          */
3358                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3359                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3360
3361                         hw_p = &q->fstn->hw_next;
3362                         q = &q->fstn->fstn_next;
3363                         break;
3364                 case Q_TYPE_ITD:
3365                         if (q->itd->hw_transaction[uframe])
3366                                 usecs += q->itd->stream->usecs;
3367                         hw_p = &q->itd->hw_next;
3368                         q = &q->itd->itd_next;
3369                         break;
3370                 }
3371         }
3372         if (usecs > fotg210->uframe_periodic_max)
3373                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3374                                 frame * 8 + uframe, usecs);
3375         return usecs;
3376 }
3377
3378 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3379 {
3380         if (!dev1->tt || !dev2->tt)
3381                 return 0;
3382         if (dev1->tt != dev2->tt)
3383                 return 0;
3384         if (dev1->tt->multi)
3385                 return dev1->ttport == dev2->ttport;
3386         else
3387                 return 1;
3388 }
3389
3390 /* return true iff the device's transaction translator is available
3391  * for a periodic transfer starting at the specified frame, using
3392  * all the uframes in the mask.
3393  */
3394 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3395                 struct usb_device *dev, unsigned frame, u32 uf_mask)
3396 {
3397         if (period == 0)        /* error */
3398                 return 0;
3399
3400         /* note bandwidth wastage:  split never follows csplit
3401          * (different dev or endpoint) until the next uframe.
3402          * calling convention doesn't make that distinction.
3403          */
3404         for (; frame < fotg210->periodic_size; frame += period) {
3405                 union fotg210_shadow here;
3406                 __hc32 type;
3407                 struct fotg210_qh_hw *hw;
3408
3409                 here = fotg210->pshadow[frame];
3410                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3411                 while (here.ptr) {
3412                         switch (hc32_to_cpu(fotg210, type)) {
3413                         case Q_TYPE_ITD:
3414                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3415                                 here = here.itd->itd_next;
3416                                 continue;
3417                         case Q_TYPE_QH:
3418                                 hw = here.qh->hw;
3419                                 if (same_tt(dev, here.qh->dev)) {
3420                                         u32 mask;
3421
3422                                         mask = hc32_to_cpu(fotg210,
3423                                                         hw->hw_info2);
3424                                         /* "knows" no gap is needed */
3425                                         mask |= mask >> 8;
3426                                         if (mask & uf_mask)
3427                                                 break;
3428                                 }
3429                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3430                                 here = here.qh->qh_next;
3431                                 continue;
3432                         /* case Q_TYPE_FSTN: */
3433                         default:
3434                                 fotg210_dbg(fotg210,
3435                                                 "periodic frame %d bogus type %d\n",
3436                                                 frame, type);
3437                         }
3438
3439                         /* collision or error */
3440                         return 0;
3441                 }
3442         }
3443
3444         /* no collision */
3445         return 1;
3446 }
3447
3448 static void enable_periodic(struct fotg210_hcd *fotg210)
3449 {
3450         if (fotg210->periodic_count++)
3451                 return;
3452
3453         /* Stop waiting to turn off the periodic schedule */
3454         fotg210->enabled_hrtimer_events &=
3455                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3456
3457         /* Don't start the schedule until PSS is 0 */
3458         fotg210_poll_PSS(fotg210);
3459         turn_on_io_watchdog(fotg210);
3460 }
3461
3462 static void disable_periodic(struct fotg210_hcd *fotg210)
3463 {
3464         if (--fotg210->periodic_count)
3465                 return;
3466
3467         /* Don't turn off the schedule until PSS is 1 */
3468         fotg210_poll_PSS(fotg210);
3469 }
3470
3471 /* periodic schedule slots have iso tds (normal or split) first, then a
3472  * sparse tree for active interrupt transfers.
3473  *
3474  * this just links in a qh; caller guarantees uframe masks are set right.
3475  * no FSTN support (yet; fotg210 0.96+)
3476  */
3477 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3478 {
3479         unsigned i;
3480         unsigned period = qh->period;
3481
3482         dev_dbg(&qh->dev->dev,
3483                         "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3484                         hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3485                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3486                         qh->c_usecs);
3487
3488         /* high bandwidth, or otherwise every microframe */
3489         if (period == 0)
3490                 period = 1;
3491
3492         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3493                 union fotg210_shadow *prev = &fotg210->pshadow[i];
3494                 __hc32 *hw_p = &fotg210->periodic[i];
3495                 union fotg210_shadow here = *prev;
3496                 __hc32 type = 0;
3497
3498                 /* skip the iso nodes at list head */
3499                 while (here.ptr) {
3500                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3501                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3502                                 break;
3503                         prev = periodic_next_shadow(fotg210, prev, type);
3504                         hw_p = shadow_next_periodic(fotg210, &here, type);
3505                         here = *prev;
3506                 }
3507
3508                 /* sorting each branch by period (slow-->fast)
3509                  * enables sharing interior tree nodes
3510                  */
3511                 while (here.ptr && qh != here.qh) {
3512                         if (qh->period > here.qh->period)
3513                                 break;
3514                         prev = &here.qh->qh_next;
3515                         hw_p = &here.qh->hw->hw_next;
3516                         here = *prev;
3517                 }
3518                 /* link in this qh, unless some earlier pass did that */
3519                 if (qh != here.qh) {
3520                         qh->qh_next = here;
3521                         if (here.qh)
3522                                 qh->hw->hw_next = *hw_p;
3523                         wmb();
3524                         prev->qh = qh;
3525                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3526                 }
3527         }
3528         qh->qh_state = QH_STATE_LINKED;
3529         qh->xacterrs = 0;
3530
3531         /* update per-qh bandwidth for usbfs */
3532         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3533                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3534                 : (qh->usecs * 8);
3535
3536         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3537
3538         /* maybe enable periodic schedule processing */
3539         ++fotg210->intr_count;
3540         enable_periodic(fotg210);
3541 }
3542
3543 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3544                 struct fotg210_qh *qh)
3545 {
3546         unsigned i;
3547         unsigned period;
3548
3549         /*
3550          * If qh is for a low/full-speed device, simply unlinking it
3551          * could interfere with an ongoing split transaction.  To unlink
3552          * it safely would require setting the QH_INACTIVATE bit and
3553          * waiting at least one frame, as described in EHCI 4.12.2.5.
3554          *
3555          * We won't bother with any of this.  Instead, we assume that the
3556          * only reason for unlinking an interrupt QH while the current URB
3557          * is still active is to dequeue all the URBs (flush the whole
3558          * endpoint queue).
3559          *
3560          * If rebalancing the periodic schedule is ever implemented, this
3561          * approach will no longer be valid.
3562          */
3563
3564         /* high bandwidth, or otherwise part of every microframe */
3565         period = qh->period;
3566         if (!period)
3567                 period = 1;
3568
3569         for (i = qh->start; i < fotg210->periodic_size; i += period)
3570                 periodic_unlink(fotg210, i, qh);
3571
3572         /* update per-qh bandwidth for usbfs */
3573         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3574                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3575                 : (qh->usecs * 8);
3576
3577         dev_dbg(&qh->dev->dev,
3578                         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3579                         qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3580                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3581                         qh->c_usecs);
3582
3583         /* qh->qh_next still "live" to HC */
3584         qh->qh_state = QH_STATE_UNLINK;
3585         qh->qh_next.ptr = NULL;
3586
3587         if (fotg210->qh_scan_next == qh)
3588                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3589                                 struct fotg210_qh, intr_node);
3590         list_del(&qh->intr_node);
3591 }
3592
3593 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3594                 struct fotg210_qh *qh)
3595 {
3596         /* If the QH isn't linked then there's nothing we can do
3597          * unless we were called during a giveback, in which case
3598          * qh_completions() has to deal with it.
3599          */
3600         if (qh->qh_state != QH_STATE_LINKED) {
3601                 if (qh->qh_state == QH_STATE_COMPLETING)
3602                         qh->needs_rescan = 1;
3603                 return;
3604         }
3605
3606         qh_unlink_periodic(fotg210, qh);
3607
3608         /* Make sure the unlinks are visible before starting the timer */
3609         wmb();
3610
3611         /*
3612          * The EHCI spec doesn't say how long it takes the controller to
3613          * stop accessing an unlinked interrupt QH.  The timer delay is
3614          * 9 uframes; presumably that will be long enough.
3615          */
3616         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3617
3618         /* New entries go at the end of the intr_unlink list */
3619         if (fotg210->intr_unlink)
3620                 fotg210->intr_unlink_last->unlink_next = qh;
3621         else
3622                 fotg210->intr_unlink = qh;
3623         fotg210->intr_unlink_last = qh;
3624
3625         if (fotg210->intr_unlinking)
3626                 ;       /* Avoid recursive calls */
3627         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3628                 fotg210_handle_intr_unlinks(fotg210);
3629         else if (fotg210->intr_unlink == qh) {
3630                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3631                                 true);
3632                 ++fotg210->intr_unlink_cycle;
3633         }
3634 }
3635
3636 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3637 {
3638         struct fotg210_qh_hw *hw = qh->hw;
3639         int rc;
3640
3641         qh->qh_state = QH_STATE_IDLE;
3642         hw->hw_next = FOTG210_LIST_END(fotg210);
3643
3644         qh_completions(fotg210, qh);
3645
3646         /* reschedule QH iff another request is queued */
3647         if (!list_empty(&qh->qtd_list) &&
3648                         fotg210->rh_state == FOTG210_RH_RUNNING) {
3649                 rc = qh_schedule(fotg210, qh);
3650
3651                 /* An error here likely indicates handshake failure
3652                  * or no space left in the schedule.  Neither fault
3653                  * should happen often ...
3654                  *
3655                  * FIXME kill the now-dysfunctional queued urbs
3656                  */
3657                 if (rc != 0)
3658                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3659                                         qh, rc);
3660         }
3661
3662         /* maybe turn off periodic schedule */
3663         --fotg210->intr_count;
3664         disable_periodic(fotg210);
3665 }
3666
3667 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3668                 unsigned uframe, unsigned period, unsigned usecs)
3669 {
3670         int claimed;
3671
3672         /* complete split running into next frame?
3673          * given FSTN support, we could sometimes check...
3674          */
3675         if (uframe >= 8)
3676                 return 0;
3677
3678         /* convert "usecs we need" to "max already claimed" */
3679         usecs = fotg210->uframe_periodic_max - usecs;
3680
3681         /* we "know" 2 and 4 uframe intervals were rejected; so
3682          * for period 0, check _every_ microframe in the schedule.
3683          */
3684         if (unlikely(period == 0)) {
3685                 do {
3686                         for (uframe = 0; uframe < 7; uframe++) {
3687                                 claimed = periodic_usecs(fotg210, frame,
3688                                                 uframe);
3689                                 if (claimed > usecs)
3690                                         return 0;
3691                         }
3692                 } while ((frame += 1) < fotg210->periodic_size);
3693
3694         /* just check the specified uframe, at that period */
3695         } else {
3696                 do {
3697                         claimed = periodic_usecs(fotg210, frame, uframe);
3698                         if (claimed > usecs)
3699                                 return 0;
3700                 } while ((frame += period) < fotg210->periodic_size);
3701         }
3702
3703         /* success! */
3704         return 1;
3705 }
3706
3707 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3708                 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3709 {
3710         int retval = -ENOSPC;
3711         u8 mask = 0;
3712
3713         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3714                 goto done;
3715
3716         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3717                 goto done;
3718         if (!qh->c_usecs) {
3719                 retval = 0;
3720                 *c_maskp = 0;
3721                 goto done;
3722         }
3723
3724         /* Make sure this tt's buffer is also available for CSPLITs.
3725          * We pessimize a bit; probably the typical full speed case
3726          * doesn't need the second CSPLIT.
3727          *
3728          * NOTE:  both SPLIT and CSPLIT could be checked in just
3729          * one smart pass...
3730          */
3731         mask = 0x03 << (uframe + qh->gap_uf);
3732         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3733
3734         mask |= 1 << uframe;
3735         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3736                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3737                                 qh->period, qh->c_usecs))
3738                         goto done;
3739                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3740                                 qh->period, qh->c_usecs))
3741                         goto done;
3742                 retval = 0;
3743         }
3744 done:
3745         return retval;
3746 }
3747
3748 /* "first fit" scheduling policy used the first time through,
3749  * or when the previous schedule slot can't be re-used.
3750  */
3751 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3752 {
3753         int status;
3754         unsigned uframe;
3755         __hc32 c_mask;
3756         unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3757         struct fotg210_qh_hw *hw = qh->hw;
3758
3759         qh_refresh(fotg210, qh);
3760         hw->hw_next = FOTG210_LIST_END(fotg210);
3761         frame = qh->start;
3762
3763         /* reuse the previous schedule slots, if we can */
3764         if (frame < qh->period) {
3765                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3766                 status = check_intr_schedule(fotg210, frame, --uframe,
3767                                 qh, &c_mask);
3768         } else {
3769                 uframe = 0;
3770                 c_mask = 0;
3771                 status = -ENOSPC;
3772         }
3773
3774         /* else scan the schedule to find a group of slots such that all
3775          * uframes have enough periodic bandwidth available.
3776          */
3777         if (status) {
3778                 /* "normal" case, uframing flexible except with splits */
3779                 if (qh->period) {
3780                         int i;
3781
3782                         for (i = qh->period; status && i > 0; --i) {
3783                                 frame = ++fotg210->random_frame % qh->period;
3784                                 for (uframe = 0; uframe < 8; uframe++) {
3785                                         status = check_intr_schedule(fotg210,
3786                                                         frame, uframe, qh,
3787                                                         &c_mask);
3788                                         if (status == 0)
3789                                                 break;
3790                                 }
3791                         }
3792
3793                 /* qh->period == 0 means every uframe */
3794                 } else {
3795                         frame = 0;
3796                         status = check_intr_schedule(fotg210, 0, 0, qh,
3797                                         &c_mask);
3798                 }
3799                 if (status)
3800                         goto done;
3801                 qh->start = frame;
3802
3803                 /* reset S-frame and (maybe) C-frame masks */
3804                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3805                 hw->hw_info2 |= qh->period
3806                         ? cpu_to_hc32(fotg210, 1 << uframe)
3807                         : cpu_to_hc32(fotg210, QH_SMASK);
3808                 hw->hw_info2 |= c_mask;
3809         } else
3810                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3811
3812         /* stuff into the periodic schedule */
3813         qh_link_periodic(fotg210, qh);
3814 done:
3815         return status;
3816 }
3817
3818 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3819                 struct list_head *qtd_list, gfp_t mem_flags)
3820 {
3821         unsigned epnum;
3822         unsigned long flags;
3823         struct fotg210_qh *qh;
3824         int status;
3825         struct list_head empty;
3826
3827         /* get endpoint and transfer/schedule data */
3828         epnum = urb->ep->desc.bEndpointAddress;
3829
3830         spin_lock_irqsave(&fotg210->lock, flags);
3831
3832         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3833                 status = -ESHUTDOWN;
3834                 goto done_not_linked;
3835         }
3836         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3837         if (unlikely(status))
3838                 goto done_not_linked;
3839
3840         /* get qh and force any scheduling errors */
3841         INIT_LIST_HEAD(&empty);
3842         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3843         if (qh == NULL) {
3844                 status = -ENOMEM;
3845                 goto done;
3846         }
3847         if (qh->qh_state == QH_STATE_IDLE) {
3848                 status = qh_schedule(fotg210, qh);
3849                 if (status)
3850                         goto done;
3851         }
3852
3853         /* then queue the urb's tds to the qh */
3854         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3855         BUG_ON(qh == NULL);
3856
3857         /* ... update usbfs periodic stats */
3858         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3859
3860 done:
3861         if (unlikely(status))
3862                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3863 done_not_linked:
3864         spin_unlock_irqrestore(&fotg210->lock, flags);
3865         if (status)
3866                 qtd_list_free(fotg210, urb, qtd_list);
3867
3868         return status;
3869 }
3870
3871 static void scan_intr(struct fotg210_hcd *fotg210)
3872 {
3873         struct fotg210_qh *qh;
3874
3875         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3876                         &fotg210->intr_qh_list, intr_node) {
3877 rescan:
3878                 /* clean any finished work for this qh */
3879                 if (!list_empty(&qh->qtd_list)) {
3880                         int temp;
3881
3882                         /*
3883                          * Unlinks could happen here; completion reporting
3884                          * drops the lock.  That's why fotg210->qh_scan_next
3885                          * always holds the next qh to scan; if the next qh
3886                          * gets unlinked then fotg210->qh_scan_next is adjusted
3887                          * in qh_unlink_periodic().
3888                          */
3889                         temp = qh_completions(fotg210, qh);
3890                         if (unlikely(qh->needs_rescan ||
3891                                         (list_empty(&qh->qtd_list) &&
3892                                         qh->qh_state == QH_STATE_LINKED)))
3893                                 start_unlink_intr(fotg210, qh);
3894                         else if (temp != 0)
3895                                 goto rescan;
3896                 }
3897         }
3898 }
3899
3900 /* fotg210_iso_stream ops work with both ITD and SITD */
3901
3902 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3903 {
3904         struct fotg210_iso_stream *stream;
3905
3906         stream = kzalloc(sizeof(*stream), mem_flags);
3907         if (likely(stream != NULL)) {
3908                 INIT_LIST_HEAD(&stream->td_list);
3909                 INIT_LIST_HEAD(&stream->free_list);
3910                 stream->next_uframe = -1;
3911         }
3912         return stream;
3913 }
3914
3915 static void iso_stream_init(struct fotg210_hcd *fotg210,
3916                 struct fotg210_iso_stream *stream, struct usb_device *dev,
3917                 int pipe, unsigned interval)
3918 {
3919         u32 buf1;
3920         unsigned epnum, maxp;
3921         int is_input;
3922         long bandwidth;
3923         unsigned multi;
3924         struct usb_host_endpoint *ep;
3925
3926         /*
3927          * this might be a "high bandwidth" highspeed endpoint,
3928          * as encoded in the ep descriptor's wMaxPacket field
3929          */
3930         epnum = usb_pipeendpoint(pipe);
3931         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3932         ep = usb_pipe_endpoint(dev, pipe);
3933         maxp = usb_endpoint_maxp(&ep->desc);
3934         if (is_input)
3935                 buf1 = (1 << 11);
3936         else
3937                 buf1 = 0;
3938
3939         multi = usb_endpoint_maxp_mult(&ep->desc);
3940         buf1 |= maxp;
3941         maxp *= multi;
3942
3943         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3944         stream->buf1 = cpu_to_hc32(fotg210, buf1);
3945         stream->buf2 = cpu_to_hc32(fotg210, multi);
3946
3947         /* usbfs wants to report the average usecs per frame tied up
3948          * when transfers on this endpoint are scheduled ...
3949          */
3950         if (dev->speed == USB_SPEED_FULL) {
3951                 interval <<= 3;
3952                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3953                                 is_input, 1, maxp));
3954                 stream->usecs /= 8;
3955         } else {
3956                 stream->highspeed = 1;
3957                 stream->usecs = HS_USECS_ISO(maxp);
3958         }
3959         bandwidth = stream->usecs * 8;
3960         bandwidth /= interval;
3961
3962         stream->bandwidth = bandwidth;
3963         stream->udev = dev;
3964         stream->bEndpointAddress = is_input | epnum;
3965         stream->interval = interval;
3966         stream->maxp = maxp;
3967 }
3968
3969 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3970                 struct urb *urb)
3971 {
3972         unsigned epnum;
3973         struct fotg210_iso_stream *stream;
3974         struct usb_host_endpoint *ep;
3975         unsigned long flags;
3976
3977         epnum = usb_pipeendpoint(urb->pipe);
3978         if (usb_pipein(urb->pipe))
3979                 ep = urb->dev->ep_in[epnum];
3980         else
3981                 ep = urb->dev->ep_out[epnum];
3982
3983         spin_lock_irqsave(&fotg210->lock, flags);
3984         stream = ep->hcpriv;
3985
3986         if (unlikely(stream == NULL)) {
3987                 stream = iso_stream_alloc(GFP_ATOMIC);
3988                 if (likely(stream != NULL)) {
3989                         ep->hcpriv = stream;
3990                         stream->ep = ep;
3991                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3992                                         urb->interval);
3993                 }
3994
3995         /* if dev->ep[epnum] is a QH, hw is set */
3996         } else if (unlikely(stream->hw != NULL)) {
3997                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3998                                 urb->dev->devpath, epnum,
3999                                 usb_pipein(urb->pipe) ? "in" : "out");
4000                 stream = NULL;
4001         }
4002
4003         spin_unlock_irqrestore(&fotg210->lock, flags);
4004         return stream;
4005 }
4006
4007 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4008
4009 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4010                 gfp_t mem_flags)
4011 {
4012         struct fotg210_iso_sched *iso_sched;
4013
4014         iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
4015         if (likely(iso_sched != NULL))
4016                 INIT_LIST_HEAD(&iso_sched->td_list);
4017
4018         return iso_sched;
4019 }
4020
4021 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4022                 struct fotg210_iso_sched *iso_sched,
4023                 struct fotg210_iso_stream *stream, struct urb *urb)
4024 {
4025         unsigned i;
4026         dma_addr_t dma = urb->transfer_dma;
4027
4028         /* how many uframes are needed for these transfers */
4029         iso_sched->span = urb->number_of_packets * stream->interval;
4030
4031         /* figure out per-uframe itd fields that we'll need later
4032          * when we fit new itds into the schedule.
4033          */
4034         for (i = 0; i < urb->number_of_packets; i++) {
4035                 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4036                 unsigned length;
4037                 dma_addr_t buf;
4038                 u32 trans;
4039
4040                 length = urb->iso_frame_desc[i].length;
4041                 buf = dma + urb->iso_frame_desc[i].offset;
4042
4043                 trans = FOTG210_ISOC_ACTIVE;
4044                 trans |= buf & 0x0fff;
4045                 if (unlikely(((i + 1) == urb->number_of_packets))
4046                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4047                         trans |= FOTG210_ITD_IOC;
4048                 trans |= length << 16;
4049                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4050
4051                 /* might need to cross a buffer page within a uframe */
4052                 uframe->bufp = (buf & ~(u64)0x0fff);
4053                 buf += length;
4054                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4055                         uframe->cross = 1;
4056         }
4057 }
4058
4059 static void iso_sched_free(struct fotg210_iso_stream *stream,
4060                 struct fotg210_iso_sched *iso_sched)
4061 {
4062         if (!iso_sched)
4063                 return;
4064         /* caller must hold fotg210->lock!*/
4065         list_splice(&iso_sched->td_list, &stream->free_list);
4066         kfree(iso_sched);
4067 }
4068
4069 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4070                 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4071 {
4072         struct fotg210_itd *itd;
4073         dma_addr_t itd_dma;
4074         int i;
4075         unsigned num_itds;
4076         struct fotg210_iso_sched *sched;
4077         unsigned long flags;
4078
4079         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4080         if (unlikely(sched == NULL))
4081                 return -ENOMEM;
4082
4083         itd_sched_init(fotg210, sched, stream, urb);
4084
4085         if (urb->interval < 8)
4086                 num_itds = 1 + (sched->span + 7) / 8;
4087         else
4088                 num_itds = urb->number_of_packets;
4089
4090         /* allocate/init ITDs */
4091         spin_lock_irqsave(&fotg210->lock, flags);
4092         for (i = 0; i < num_itds; i++) {
4093
4094                 /*
4095                  * Use iTDs from the free list, but not iTDs that may
4096                  * still be in use by the hardware.
4097                  */
4098                 if (likely(!list_empty(&stream->free_list))) {
4099                         itd = list_first_entry(&stream->free_list,
4100                                         struct fotg210_itd, itd_list);
4101                         if (itd->frame == fotg210->now_frame)
4102                                 goto alloc_itd;
4103                         list_del(&itd->itd_list);
4104                         itd_dma = itd->itd_dma;
4105                 } else {
4106 alloc_itd:
4107                         spin_unlock_irqrestore(&fotg210->lock, flags);
4108                         itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4109                                         &itd_dma);
4110                         spin_lock_irqsave(&fotg210->lock, flags);
4111                         if (!itd) {
4112                                 iso_sched_free(stream, sched);
4113                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4114                                 return -ENOMEM;
4115                         }
4116                 }
4117
4118                 memset(itd, 0, sizeof(*itd));
4119                 itd->itd_dma = itd_dma;
4120                 list_add(&itd->itd_list, &sched->td_list);
4121         }
4122         spin_unlock_irqrestore(&fotg210->lock, flags);
4123
4124         /* temporarily store schedule info in hcpriv */
4125         urb->hcpriv = sched;
4126         urb->error_count = 0;
4127         return 0;
4128 }
4129
4130 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4131                 u8 usecs, u32 period)
4132 {
4133         uframe %= period;
4134         do {
4135                 /* can't commit more than uframe_periodic_max usec */
4136                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4137                                 > (fotg210->uframe_periodic_max - usecs))
4138                         return 0;
4139
4140                 /* we know urb->interval is 2^N uframes */
4141                 uframe += period;
4142         } while (uframe < mod);
4143         return 1;
4144 }
4145
4146 /* This scheduler plans almost as far into the future as it has actual
4147  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4148  * "as small as possible" to be cache-friendlier.)  That limits the size
4149  * transfers you can stream reliably; avoid more than 64 msec per urb.
4150  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4151  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4152  * and other factors); or more than about 230 msec total (for portability,
4153  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4154  */
4155
4156 #define SCHEDULE_SLOP 80 /* microframes */
4157
4158 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4159                 struct fotg210_iso_stream *stream)
4160 {
4161         u32 now, next, start, period, span;
4162         int status;
4163         unsigned mod = fotg210->periodic_size << 3;
4164         struct fotg210_iso_sched *sched = urb->hcpriv;
4165
4166         period = urb->interval;
4167         span = sched->span;
4168
4169         if (span > mod - SCHEDULE_SLOP) {
4170                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4171                 status = -EFBIG;
4172                 goto fail;
4173         }
4174
4175         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4176
4177         /* Typical case: reuse current schedule, stream is still active.
4178          * Hopefully there are no gaps from the host falling behind
4179          * (irq delays etc), but if there are we'll take the next
4180          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4181          */
4182         if (likely(!list_empty(&stream->td_list))) {
4183                 u32 excess;
4184
4185                 /* For high speed devices, allow scheduling within the
4186                  * isochronous scheduling threshold.  For full speed devices
4187                  * and Intel PCI-based controllers, don't (work around for
4188                  * Intel ICH9 bug).
4189                  */
4190                 if (!stream->highspeed && fotg210->fs_i_thresh)
4191                         next = now + fotg210->i_thresh;
4192                 else
4193                         next = now;
4194
4195                 /* Fell behind (by up to twice the slop amount)?
4196                  * We decide based on the time of the last currently-scheduled
4197                  * slot, not the time of the next available slot.
4198                  */
4199                 excess = (stream->next_uframe - period - next) & (mod - 1);
4200                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4201                         start = next + excess - mod + period *
4202                                         DIV_ROUND_UP(mod - excess, period);
4203                 else
4204                         start = next + excess + period;
4205                 if (start - now >= mod) {
4206                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4207                                         urb, start - now - period, period,
4208                                         mod);
4209                         status = -EFBIG;
4210                         goto fail;
4211                 }
4212         }
4213
4214         /* need to schedule; when's the next (u)frame we could start?
4215          * this is bigger than fotg210->i_thresh allows; scheduling itself
4216          * isn't free, the slop should handle reasonably slow cpus.  it
4217          * can also help high bandwidth if the dma and irq loads don't
4218          * jump until after the queue is primed.
4219          */
4220         else {
4221                 int done = 0;
4222
4223                 start = SCHEDULE_SLOP + (now & ~0x07);
4224
4225                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4226
4227                 /* find a uframe slot with enough bandwidth.
4228                  * Early uframes are more precious because full-speed
4229                  * iso IN transfers can't use late uframes,
4230                  * and therefore they should be allocated last.
4231                  */
4232                 next = start;
4233                 start += period;
4234                 do {
4235                         start--;
4236                         /* check schedule: enough space? */
4237                         if (itd_slot_ok(fotg210, mod, start,
4238                                         stream->usecs, period))
4239                                 done = 1;
4240                 } while (start > next && !done);
4241
4242                 /* no room in the schedule */
4243                 if (!done) {
4244                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4245                                         urb, now, now + mod);
4246                         status = -ENOSPC;
4247                         goto fail;
4248                 }
4249         }
4250
4251         /* Tried to schedule too far into the future? */
4252         if (unlikely(start - now + span - period >=
4253                         mod - 2 * SCHEDULE_SLOP)) {
4254                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4255                                 urb, start - now, span - period,
4256                                 mod - 2 * SCHEDULE_SLOP);
4257                 status = -EFBIG;
4258                 goto fail;
4259         }
4260
4261         stream->next_uframe = start & (mod - 1);
4262
4263         /* report high speed start in uframes; full speed, in frames */
4264         urb->start_frame = stream->next_uframe;
4265         if (!stream->highspeed)
4266                 urb->start_frame >>= 3;
4267
4268         /* Make sure scan_isoc() sees these */
4269         if (fotg210->isoc_count == 0)
4270                 fotg210->next_frame = now >> 3;
4271         return 0;
4272
4273 fail:
4274         iso_sched_free(stream, sched);
4275         urb->hcpriv = NULL;
4276         return status;
4277 }
4278
4279 static inline void itd_init(struct fotg210_hcd *fotg210,
4280                 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4281 {
4282         int i;
4283
4284         /* it's been recently zeroed */
4285         itd->hw_next = FOTG210_LIST_END(fotg210);
4286         itd->hw_bufp[0] = stream->buf0;
4287         itd->hw_bufp[1] = stream->buf1;
4288         itd->hw_bufp[2] = stream->buf2;
4289
4290         for (i = 0; i < 8; i++)
4291                 itd->index[i] = -1;
4292
4293         /* All other fields are filled when scheduling */
4294 }
4295
4296 static inline void itd_patch(struct fotg210_hcd *fotg210,
4297                 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4298                 unsigned index, u16 uframe)
4299 {
4300         struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4301         unsigned pg = itd->pg;
4302
4303         uframe &= 0x07;
4304         itd->index[uframe] = index;
4305
4306         itd->hw_transaction[uframe] = uf->transaction;
4307         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4308         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4309         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4310
4311         /* iso_frame_desc[].offset must be strictly increasing */
4312         if (unlikely(uf->cross)) {
4313                 u64 bufp = uf->bufp + 4096;
4314
4315                 itd->pg = ++pg;
4316                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4317                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4318         }
4319 }
4320
4321 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4322                 struct fotg210_itd *itd)
4323 {
4324         union fotg210_shadow *prev = &fotg210->pshadow[frame];
4325         __hc32 *hw_p = &fotg210->periodic[frame];
4326         union fotg210_shadow here = *prev;
4327         __hc32 type = 0;
4328
4329         /* skip any iso nodes which might belong to previous microframes */
4330         while (here.ptr) {
4331                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4332                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4333                         break;
4334                 prev = periodic_next_shadow(fotg210, prev, type);
4335                 hw_p = shadow_next_periodic(fotg210, &here, type);
4336                 here = *prev;
4337         }
4338
4339         itd->itd_next = here;
4340         itd->hw_next = *hw_p;
4341         prev->itd = itd;
4342         itd->frame = frame;
4343         wmb();
4344         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4345 }
4346
4347 /* fit urb's itds into the selected schedule slot; activate as needed */
4348 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4349                 unsigned mod, struct fotg210_iso_stream *stream)
4350 {
4351         int packet;
4352         unsigned next_uframe, uframe, frame;
4353         struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4354         struct fotg210_itd *itd;
4355
4356         next_uframe = stream->next_uframe & (mod - 1);
4357
4358         if (unlikely(list_empty(&stream->td_list))) {
4359                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4360                                 += stream->bandwidth;
4361                 fotg210_dbg(fotg210,
4362                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4363                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4364                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4365                         urb->interval,
4366                         next_uframe >> 3, next_uframe & 0x7);
4367         }
4368
4369         /* fill iTDs uframe by uframe */
4370         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4371                 if (itd == NULL) {
4372                         /* ASSERT:  we have all necessary itds */
4373
4374                         /* ASSERT:  no itds for this endpoint in this uframe */
4375
4376                         itd = list_entry(iso_sched->td_list.next,
4377                                         struct fotg210_itd, itd_list);
4378                         list_move_tail(&itd->itd_list, &stream->td_list);
4379                         itd->stream = stream;
4380                         itd->urb = urb;
4381                         itd_init(fotg210, stream, itd);
4382                 }
4383
4384                 uframe = next_uframe & 0x07;
4385                 frame = next_uframe >> 3;
4386
4387                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4388
4389                 next_uframe += stream->interval;
4390                 next_uframe &= mod - 1;
4391                 packet++;
4392
4393                 /* link completed itds into the schedule */
4394                 if (((next_uframe >> 3) != frame)
4395                                 || packet == urb->number_of_packets) {
4396                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4397                                         itd);
4398                         itd = NULL;
4399                 }
4400         }
4401         stream->next_uframe = next_uframe;
4402
4403         /* don't need that schedule data any more */
4404         iso_sched_free(stream, iso_sched);
4405         urb->hcpriv = NULL;
4406
4407         ++fotg210->isoc_count;
4408         enable_periodic(fotg210);
4409 }
4410
4411 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4412                 FOTG210_ISOC_XACTERR)
4413
4414 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4415  * and hence its completion callback probably added things to the hardware
4416  * schedule.
4417  *
4418  * Note that we carefully avoid recycling this descriptor until after any
4419  * completion callback runs, so that it won't be reused quickly.  That is,
4420  * assuming (a) no more than two urbs per frame on this endpoint, and also
4421  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4422  * corrupts things if you reuse completed descriptors very quickly...
4423  */
4424 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4425 {
4426         struct urb *urb = itd->urb;
4427         struct usb_iso_packet_descriptor *desc;
4428         u32 t;
4429         unsigned uframe;
4430         int urb_index = -1;
4431         struct fotg210_iso_stream *stream = itd->stream;
4432         struct usb_device *dev;
4433         bool retval = false;
4434
4435         /* for each uframe with a packet */
4436         for (uframe = 0; uframe < 8; uframe++) {
4437                 if (likely(itd->index[uframe] == -1))
4438                         continue;
4439                 urb_index = itd->index[uframe];
4440                 desc = &urb->iso_frame_desc[urb_index];
4441
4442                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4443                 itd->hw_transaction[uframe] = 0;
4444
4445                 /* report transfer status */
4446                 if (unlikely(t & ISO_ERRS)) {
4447                         urb->error_count++;
4448                         if (t & FOTG210_ISOC_BUF_ERR)
4449                                 desc->status = usb_pipein(urb->pipe)
4450                                         ? -ENOSR  /* hc couldn't read */
4451                                         : -ECOMM; /* hc couldn't write */
4452                         else if (t & FOTG210_ISOC_BABBLE)
4453                                 desc->status = -EOVERFLOW;
4454                         else /* (t & FOTG210_ISOC_XACTERR) */
4455                                 desc->status = -EPROTO;
4456
4457                         /* HC need not update length with this error */
4458                         if (!(t & FOTG210_ISOC_BABBLE)) {
4459                                 desc->actual_length = FOTG210_ITD_LENGTH(t);
4460                                 urb->actual_length += desc->actual_length;
4461                         }
4462                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4463                         desc->status = 0;
4464                         desc->actual_length = FOTG210_ITD_LENGTH(t);
4465                         urb->actual_length += desc->actual_length;
4466                 } else {
4467                         /* URB was too late */
4468                         desc->status = -EXDEV;
4469                 }
4470         }
4471
4472         /* handle completion now? */
4473         if (likely((urb_index + 1) != urb->number_of_packets))
4474                 goto done;
4475
4476         /* ASSERT: it's really the last itd for this urb
4477          * list_for_each_entry (itd, &stream->td_list, itd_list)
4478          *      BUG_ON (itd->urb == urb);
4479          */
4480
4481         /* give urb back to the driver; completion often (re)submits */
4482         dev = urb->dev;
4483         fotg210_urb_done(fotg210, urb, 0);
4484         retval = true;
4485         urb = NULL;
4486
4487         --fotg210->isoc_count;
4488         disable_periodic(fotg210);
4489
4490         if (unlikely(list_is_singular(&stream->td_list))) {
4491                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4492                                 -= stream->bandwidth;
4493                 fotg210_dbg(fotg210,
4494                         "deschedule devp %s ep%d%s-iso\n",
4495                         dev->devpath, stream->bEndpointAddress & 0x0f,
4496                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4497         }
4498
4499 done:
4500         itd->urb = NULL;
4501
4502         /* Add to the end of the free list for later reuse */
4503         list_move_tail(&itd->itd_list, &stream->free_list);
4504
4505         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4506         if (list_empty(&stream->td_list)) {
4507                 list_splice_tail_init(&stream->free_list,
4508                                 &fotg210->cached_itd_list);
4509                 start_free_itds(fotg210);
4510         }
4511
4512         return retval;
4513 }
4514
4515 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4516                 gfp_t mem_flags)
4517 {
4518         int status = -EINVAL;
4519         unsigned long flags;
4520         struct fotg210_iso_stream *stream;
4521
4522         /* Get iso_stream head */
4523         stream = iso_stream_find(fotg210, urb);
4524         if (unlikely(stream == NULL)) {
4525                 fotg210_dbg(fotg210, "can't get iso stream\n");
4526                 return -ENOMEM;
4527         }
4528         if (unlikely(urb->interval != stream->interval &&
4529                         fotg210_port_speed(fotg210, 0) ==
4530                         USB_PORT_STAT_HIGH_SPEED)) {
4531                 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4532                                 stream->interval, urb->interval);
4533                 goto done;
4534         }
4535
4536 #ifdef FOTG210_URB_TRACE
4537         fotg210_dbg(fotg210,
4538                         "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4539                         __func__, urb->dev->devpath, urb,
4540                         usb_pipeendpoint(urb->pipe),
4541                         usb_pipein(urb->pipe) ? "in" : "out",
4542                         urb->transfer_buffer_length,
4543                         urb->number_of_packets, urb->interval,
4544                         stream);
4545 #endif
4546
4547         /* allocate ITDs w/o locking anything */
4548         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4549         if (unlikely(status < 0)) {
4550                 fotg210_dbg(fotg210, "can't init itds\n");
4551                 goto done;
4552         }
4553
4554         /* schedule ... need to lock */
4555         spin_lock_irqsave(&fotg210->lock, flags);
4556         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4557                 status = -ESHUTDOWN;
4558                 goto done_not_linked;
4559         }
4560         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4561         if (unlikely(status))
4562                 goto done_not_linked;
4563         status = iso_stream_schedule(fotg210, urb, stream);
4564         if (likely(status == 0))
4565                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4566         else
4567                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4568 done_not_linked:
4569         spin_unlock_irqrestore(&fotg210->lock, flags);
4570 done:
4571         return status;
4572 }
4573
4574 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4575                 unsigned now_frame, bool live)
4576 {
4577         unsigned uf;
4578         bool modified;
4579         union fotg210_shadow q, *q_p;
4580         __hc32 type, *hw_p;
4581
4582         /* scan each element in frame's queue for completions */
4583         q_p = &fotg210->pshadow[frame];
4584         hw_p = &fotg210->periodic[frame];
4585         q.ptr = q_p->ptr;
4586         type = Q_NEXT_TYPE(fotg210, *hw_p);
4587         modified = false;
4588
4589         while (q.ptr) {
4590                 switch (hc32_to_cpu(fotg210, type)) {
4591                 case Q_TYPE_ITD:
4592                         /* If this ITD is still active, leave it for
4593                          * later processing ... check the next entry.
4594                          * No need to check for activity unless the
4595                          * frame is current.
4596                          */
4597                         if (frame == now_frame && live) {
4598                                 rmb();
4599                                 for (uf = 0; uf < 8; uf++) {
4600                                         if (q.itd->hw_transaction[uf] &
4601                                                         ITD_ACTIVE(fotg210))
4602                                                 break;
4603                                 }
4604                                 if (uf < 8) {
4605                                         q_p = &q.itd->itd_next;
4606                                         hw_p = &q.itd->hw_next;
4607                                         type = Q_NEXT_TYPE(fotg210,
4608                                                         q.itd->hw_next);
4609                                         q = *q_p;
4610                                         break;
4611                                 }
4612                         }
4613
4614                         /* Take finished ITDs out of the schedule
4615                          * and process them:  recycle, maybe report
4616                          * URB completion.  HC won't cache the
4617                          * pointer for much longer, if at all.
4618                          */
4619                         *q_p = q.itd->itd_next;
4620                         *hw_p = q.itd->hw_next;
4621                         type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4622                         wmb();
4623                         modified = itd_complete(fotg210, q.itd);
4624                         q = *q_p;
4625                         break;
4626                 default:
4627                         fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4628                                         type, frame, q.ptr);
4629                         fallthrough;
4630                 case Q_TYPE_QH:
4631                 case Q_TYPE_FSTN:
4632                         /* End of the iTDs and siTDs */
4633                         q.ptr = NULL;
4634                         break;
4635                 }
4636
4637                 /* assume completion callbacks modify the queue */
4638                 if (unlikely(modified && fotg210->isoc_count > 0))
4639                         return -EINVAL;
4640         }
4641         return 0;
4642 }
4643
4644 static void scan_isoc(struct fotg210_hcd *fotg210)
4645 {
4646         unsigned uf, now_frame, frame, ret;
4647         unsigned fmask = fotg210->periodic_size - 1;
4648         bool live;
4649
4650         /*
4651          * When running, scan from last scan point up to "now"
4652          * else clean up by scanning everything that's left.
4653          * Touches as few pages as possible:  cache-friendly.
4654          */
4655         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4656                 uf = fotg210_read_frame_index(fotg210);
4657                 now_frame = (uf >> 3) & fmask;
4658                 live = true;
4659         } else  {
4660                 now_frame = (fotg210->next_frame - 1) & fmask;
4661                 live = false;
4662         }
4663         fotg210->now_frame = now_frame;
4664
4665         frame = fotg210->next_frame;
4666         for (;;) {
4667                 ret = 1;
4668                 while (ret != 0)
4669                         ret = scan_frame_queue(fotg210, frame,
4670                                         now_frame, live);
4671
4672                 /* Stop when we have reached the current frame */
4673                 if (frame == now_frame)
4674                         break;
4675                 frame = (frame + 1) & fmask;
4676         }
4677         fotg210->next_frame = now_frame;
4678 }
4679
4680 /* Display / Set uframe_periodic_max
4681  */
4682 static ssize_t uframe_periodic_max_show(struct device *dev,
4683                 struct device_attribute *attr, char *buf)
4684 {
4685         struct fotg210_hcd *fotg210;
4686
4687         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4688         return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max);
4689 }
4690
4691 static ssize_t uframe_periodic_max_store(struct device *dev,
4692                 struct device_attribute *attr, const char *buf, size_t count)
4693 {
4694         struct fotg210_hcd *fotg210;
4695         unsigned uframe_periodic_max;
4696         unsigned frame, uframe;
4697         unsigned short allocated_max;
4698         unsigned long flags;
4699         ssize_t ret;
4700
4701         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4702
4703         ret = kstrtouint(buf, 0, &uframe_periodic_max);
4704         if (ret)
4705                 return ret;
4706
4707         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4708                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4709                                 uframe_periodic_max);
4710                 return -EINVAL;
4711         }
4712
4713         ret = -EINVAL;
4714
4715         /*
4716          * lock, so that our checking does not race with possible periodic
4717          * bandwidth allocation through submitting new urbs.
4718          */
4719         spin_lock_irqsave(&fotg210->lock, flags);
4720
4721         /*
4722          * for request to decrease max periodic bandwidth, we have to check
4723          * every microframe in the schedule to see whether the decrease is
4724          * possible.
4725          */
4726         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4727                 allocated_max = 0;
4728
4729                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4730                         for (uframe = 0; uframe < 7; ++uframe)
4731                                 allocated_max = max(allocated_max,
4732                                                 periodic_usecs(fotg210, frame,
4733                                                 uframe));
4734
4735                 if (allocated_max > uframe_periodic_max) {
4736                         fotg210_info(fotg210,
4737                                         "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4738                                         allocated_max, uframe_periodic_max);
4739                         goto out_unlock;
4740                 }
4741         }
4742
4743         /* increasing is always ok */
4744
4745         fotg210_info(fotg210,
4746                         "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4747                         100 * uframe_periodic_max/125, uframe_periodic_max);
4748
4749         if (uframe_periodic_max != 100)
4750                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4751
4752         fotg210->uframe_periodic_max = uframe_periodic_max;
4753         ret = count;
4754
4755 out_unlock:
4756         spin_unlock_irqrestore(&fotg210->lock, flags);
4757         return ret;
4758 }
4759
4760 static DEVICE_ATTR_RW(uframe_periodic_max);
4761
4762 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4763 {
4764         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4765
4766         return device_create_file(controller, &dev_attr_uframe_periodic_max);
4767 }
4768
4769 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4770 {
4771         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4772
4773         device_remove_file(controller, &dev_attr_uframe_periodic_max);
4774 }
4775 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4776  * The firmware seems to think that powering off is a wakeup event!
4777  * This routine turns off remote wakeup and everything else, on all ports.
4778  */
4779 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4780 {
4781         u32 __iomem *status_reg = &fotg210->regs->port_status;
4782
4783         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4784 }
4785
4786 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4787  * Must be called with interrupts enabled and the lock not held.
4788  */
4789 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4790 {
4791         fotg210_halt(fotg210);
4792
4793         spin_lock_irq(&fotg210->lock);
4794         fotg210->rh_state = FOTG210_RH_HALTED;
4795         fotg210_turn_off_all_ports(fotg210);
4796         spin_unlock_irq(&fotg210->lock);
4797 }
4798
4799 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4800  * This forcibly disables dma and IRQs, helping kexec and other cases
4801  * where the next system software may expect clean state.
4802  */
4803 static void fotg210_shutdown(struct usb_hcd *hcd)
4804 {
4805         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4806
4807         spin_lock_irq(&fotg210->lock);
4808         fotg210->shutdown = true;
4809         fotg210->rh_state = FOTG210_RH_STOPPING;
4810         fotg210->enabled_hrtimer_events = 0;
4811         spin_unlock_irq(&fotg210->lock);
4812
4813         fotg210_silence_controller(fotg210);
4814
4815         hrtimer_cancel(&fotg210->hrtimer);
4816 }
4817
4818 /* fotg210_work is called from some interrupts, timers, and so on.
4819  * it calls driver completion functions, after dropping fotg210->lock.
4820  */
4821 static void fotg210_work(struct fotg210_hcd *fotg210)
4822 {
4823         /* another CPU may drop fotg210->lock during a schedule scan while
4824          * it reports urb completions.  this flag guards against bogus
4825          * attempts at re-entrant schedule scanning.
4826          */
4827         if (fotg210->scanning) {
4828                 fotg210->need_rescan = true;
4829                 return;
4830         }
4831         fotg210->scanning = true;
4832
4833 rescan:
4834         fotg210->need_rescan = false;
4835         if (fotg210->async_count)
4836                 scan_async(fotg210);
4837         if (fotg210->intr_count > 0)
4838                 scan_intr(fotg210);
4839         if (fotg210->isoc_count > 0)
4840                 scan_isoc(fotg210);
4841         if (fotg210->need_rescan)
4842                 goto rescan;
4843         fotg210->scanning = false;
4844
4845         /* the IO watchdog guards against hardware or driver bugs that
4846          * misplace IRQs, and should let us run completely without IRQs.
4847          * such lossage has been observed on both VT6202 and VT8235.
4848          */
4849         turn_on_io_watchdog(fotg210);
4850 }
4851
4852 /* Called when the fotg210_hcd module is removed.
4853  */
4854 static void fotg210_stop(struct usb_hcd *hcd)
4855 {
4856         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4857
4858         fotg210_dbg(fotg210, "stop\n");
4859
4860         /* no more interrupts ... */
4861
4862         spin_lock_irq(&fotg210->lock);
4863         fotg210->enabled_hrtimer_events = 0;
4864         spin_unlock_irq(&fotg210->lock);
4865
4866         fotg210_quiesce(fotg210);
4867         fotg210_silence_controller(fotg210);
4868         fotg210_reset(fotg210);
4869
4870         hrtimer_cancel(&fotg210->hrtimer);
4871         remove_sysfs_files(fotg210);
4872         remove_debug_files(fotg210);
4873
4874         /* root hub is shut down separately (first, when possible) */
4875         spin_lock_irq(&fotg210->lock);
4876         end_free_itds(fotg210);
4877         spin_unlock_irq(&fotg210->lock);
4878         fotg210_mem_cleanup(fotg210);
4879
4880 #ifdef FOTG210_STATS
4881         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4882                         fotg210->stats.normal, fotg210->stats.error,
4883                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
4884         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4885                         fotg210->stats.complete, fotg210->stats.unlink);
4886 #endif
4887
4888         dbg_status(fotg210, "fotg210_stop completed",
4889                         fotg210_readl(fotg210, &fotg210->regs->status));
4890 }
4891
4892 /* one-time init, only for memory state */
4893 static int hcd_fotg210_init(struct usb_hcd *hcd)
4894 {
4895         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4896         u32 temp;
4897         int retval;
4898         u32 hcc_params;
4899         struct fotg210_qh_hw *hw;
4900
4901         spin_lock_init(&fotg210->lock);
4902
4903         /*
4904          * keep io watchdog by default, those good HCDs could turn off it later
4905          */
4906         fotg210->need_io_watchdog = 1;
4907
4908         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4909         fotg210->hrtimer.function = fotg210_hrtimer_func;
4910         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4911
4912         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4913
4914         /*
4915          * by default set standard 80% (== 100 usec/uframe) max periodic
4916          * bandwidth as required by USB 2.0
4917          */
4918         fotg210->uframe_periodic_max = 100;
4919
4920         /*
4921          * hw default: 1K periodic list heads, one per frame.
4922          * periodic_size can shrink by USBCMD update if hcc_params allows.
4923          */
4924         fotg210->periodic_size = DEFAULT_I_TDPS;
4925         INIT_LIST_HEAD(&fotg210->intr_qh_list);
4926         INIT_LIST_HEAD(&fotg210->cached_itd_list);
4927
4928         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4929                 /* periodic schedule size can be smaller than default */
4930                 switch (FOTG210_TUNE_FLS) {
4931                 case 0:
4932                         fotg210->periodic_size = 1024;
4933                         break;
4934                 case 1:
4935                         fotg210->periodic_size = 512;
4936                         break;
4937                 case 2:
4938                         fotg210->periodic_size = 256;
4939                         break;
4940                 default:
4941                         BUG();
4942                 }
4943         }
4944         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4945         if (retval < 0)
4946                 return retval;
4947
4948         /* controllers may cache some of the periodic schedule ... */
4949         fotg210->i_thresh = 2;
4950
4951         /*
4952          * dedicate a qh for the async ring head, since we couldn't unlink
4953          * a 'real' qh without stopping the async schedule [4.8].  use it
4954          * as the 'reclamation list head' too.
4955          * its dummy is used in hw_alt_next of many tds, to prevent the qh
4956          * from automatically advancing to the next td after short reads.
4957          */
4958         fotg210->async->qh_next.qh = NULL;
4959         hw = fotg210->async->hw;
4960         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4961         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4962         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4963         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4964         fotg210->async->qh_state = QH_STATE_LINKED;
4965         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4966
4967         /* clear interrupt enables, set irq latency */
4968         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4969                 log2_irq_thresh = 0;
4970         temp = 1 << (16 + log2_irq_thresh);
4971         if (HCC_CANPARK(hcc_params)) {
4972                 /* HW default park == 3, on hardware that supports it (like
4973                  * NVidia and ALI silicon), maximizes throughput on the async
4974                  * schedule by avoiding QH fetches between transfers.
4975                  *
4976                  * With fast usb storage devices and NForce2, "park" seems to
4977                  * make problems:  throughput reduction (!), data errors...
4978                  */
4979                 if (park) {
4980                         park = min_t(unsigned, park, 3);
4981                         temp |= CMD_PARK;
4982                         temp |= park << 8;
4983                 }
4984                 fotg210_dbg(fotg210, "park %d\n", park);
4985         }
4986         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4987                 /* periodic schedule size can be smaller than default */
4988                 temp &= ~(3 << 2);
4989                 temp |= (FOTG210_TUNE_FLS << 2);
4990         }
4991         fotg210->command = temp;
4992
4993         /* Accept arbitrarily long scatter-gather lists */
4994         if (!hcd->localmem_pool)
4995                 hcd->self.sg_tablesize = ~0;
4996         return 0;
4997 }
4998
4999 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5000 static int fotg210_run(struct usb_hcd *hcd)
5001 {
5002         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5003         u32 temp;
5004
5005         hcd->uses_new_polling = 1;
5006
5007         /* EHCI spec section 4.1 */
5008
5009         fotg210_writel(fotg210, fotg210->periodic_dma,
5010                         &fotg210->regs->frame_list);
5011         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5012                         &fotg210->regs->async_next);
5013
5014         /*
5015          * hcc_params controls whether fotg210->regs->segment must (!!!)
5016          * be used; it constrains QH/ITD/SITD and QTD locations.
5017          * dma_pool consistent memory always uses segment zero.
5018          * streaming mappings for I/O buffers, like dma_map_single(),
5019          * can return segments above 4GB, if the device allows.
5020          *
5021          * NOTE:  the dma mask is visible through dev->dma_mask, so
5022          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5023          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5024          * host side drivers though.
5025          */
5026         fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5027
5028         /*
5029          * Philips, Intel, and maybe others need CMD_RUN before the
5030          * root hub will detect new devices (why?); NEC doesn't
5031          */
5032         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5033         fotg210->command |= CMD_RUN;
5034         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5035         dbg_cmd(fotg210, "init", fotg210->command);
5036
5037         /*
5038          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5039          * are explicitly handed to companion controller(s), so no TT is
5040          * involved with the root hub.  (Except where one is integrated,
5041          * and there's no companion controller unless maybe for USB OTG.)
5042          *
5043          * Turning on the CF flag will transfer ownership of all ports
5044          * from the companions to the EHCI controller.  If any of the
5045          * companions are in the middle of a port reset at the time, it
5046          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5047          * guarantees that no resets are in progress.  After we set CF,
5048          * a short delay lets the hardware catch up; new resets shouldn't
5049          * be started before the port switching actions could complete.
5050          */
5051         down_write(&ehci_cf_port_reset_rwsem);
5052         fotg210->rh_state = FOTG210_RH_RUNNING;
5053         /* unblock posted writes */
5054         fotg210_readl(fotg210, &fotg210->regs->command);
5055         usleep_range(5000, 10000);
5056         up_write(&ehci_cf_port_reset_rwsem);
5057         fotg210->last_periodic_enable = ktime_get_real();
5058
5059         temp = HC_VERSION(fotg210,
5060                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5061         fotg210_info(fotg210,
5062                         "USB %x.%x started, EHCI %x.%02x\n",
5063                         ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5064                         temp >> 8, temp & 0xff);
5065
5066         fotg210_writel(fotg210, INTR_MASK,
5067                         &fotg210->regs->intr_enable); /* Turn On Interrupts */
5068
5069         /* GRR this is run-once init(), being done every time the HC starts.
5070          * So long as they're part of class devices, we can't do it init()
5071          * since the class device isn't created that early.
5072          */
5073         create_debug_files(fotg210);
5074         create_sysfs_files(fotg210);
5075
5076         return 0;
5077 }
5078
5079 static int fotg210_setup(struct usb_hcd *hcd)
5080 {
5081         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5082         int retval;
5083
5084         fotg210->regs = (void __iomem *)fotg210->caps +
5085                         HC_LENGTH(fotg210,
5086                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5087         dbg_hcs_params(fotg210, "reset");
5088         dbg_hcc_params(fotg210, "reset");
5089
5090         /* cache this readonly data; minimize chip reads */
5091         fotg210->hcs_params = fotg210_readl(fotg210,
5092                         &fotg210->caps->hcs_params);
5093
5094         fotg210->sbrn = HCD_USB2;
5095
5096         /* data structure init */
5097         retval = hcd_fotg210_init(hcd);
5098         if (retval)
5099                 return retval;
5100
5101         retval = fotg210_halt(fotg210);
5102         if (retval)
5103                 return retval;
5104
5105         fotg210_reset(fotg210);
5106
5107         return 0;
5108 }
5109
5110 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5111 {
5112         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5113         u32 status, masked_status, pcd_status = 0, cmd;
5114         int bh;
5115
5116         spin_lock(&fotg210->lock);
5117
5118         status = fotg210_readl(fotg210, &fotg210->regs->status);
5119
5120         /* e.g. cardbus physical eject */
5121         if (status == ~(u32) 0) {
5122                 fotg210_dbg(fotg210, "device removed\n");
5123                 goto dead;
5124         }
5125
5126         /*
5127          * We don't use STS_FLR, but some controllers don't like it to
5128          * remain on, so mask it out along with the other status bits.
5129          */
5130         masked_status = status & (INTR_MASK | STS_FLR);
5131
5132         /* Shared IRQ? */
5133         if (!masked_status ||
5134                         unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5135                 spin_unlock(&fotg210->lock);
5136                 return IRQ_NONE;
5137         }
5138
5139         /* clear (just) interrupts */
5140         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5141         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5142         bh = 0;
5143
5144         /* unrequested/ignored: Frame List Rollover */
5145         dbg_status(fotg210, "irq", status);
5146
5147         /* INT, ERR, and IAA interrupt rates can be throttled */
5148
5149         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5150         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5151                 if (likely((status & STS_ERR) == 0))
5152                         INCR(fotg210->stats.normal);
5153                 else
5154                         INCR(fotg210->stats.error);
5155                 bh = 1;
5156         }
5157
5158         /* complete the unlinking of some qh [4.15.2.3] */
5159         if (status & STS_IAA) {
5160
5161                 /* Turn off the IAA watchdog */
5162                 fotg210->enabled_hrtimer_events &=
5163                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5164
5165                 /*
5166                  * Mild optimization: Allow another IAAD to reset the
5167                  * hrtimer, if one occurs before the next expiration.
5168                  * In theory we could always cancel the hrtimer, but
5169                  * tests show that about half the time it will be reset
5170                  * for some other event anyway.
5171                  */
5172                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5173                         ++fotg210->next_hrtimer_event;
5174
5175                 /* guard against (alleged) silicon errata */
5176                 if (cmd & CMD_IAAD)
5177                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5178                 if (fotg210->async_iaa) {
5179                         INCR(fotg210->stats.iaa);
5180                         end_unlink_async(fotg210);
5181                 } else
5182                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5183         }
5184
5185         /* remote wakeup [4.3.1] */
5186         if (status & STS_PCD) {
5187                 int pstatus;
5188                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5189
5190                 /* kick root hub later */
5191                 pcd_status = status;
5192
5193                 /* resume root hub? */
5194                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5195                         usb_hcd_resume_root_hub(hcd);
5196
5197                 pstatus = fotg210_readl(fotg210, status_reg);
5198
5199                 if (test_bit(0, &fotg210->suspended_ports) &&
5200                                 ((pstatus & PORT_RESUME) ||
5201                                 !(pstatus & PORT_SUSPEND)) &&
5202                                 (pstatus & PORT_PE) &&
5203                                 fotg210->reset_done[0] == 0) {
5204
5205                         /* start 20 msec resume signaling from this port,
5206                          * and make hub_wq collect PORT_STAT_C_SUSPEND to
5207                          * stop that signaling.  Use 5 ms extra for safety,
5208                          * like usb_port_resume() does.
5209                          */
5210                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5211                         set_bit(0, &fotg210->resuming_ports);
5212                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5213                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5214                 }
5215         }
5216
5217         /* PCI errors [4.15.2.4] */
5218         if (unlikely((status & STS_FATAL) != 0)) {
5219                 fotg210_err(fotg210, "fatal error\n");
5220                 dbg_cmd(fotg210, "fatal", cmd);
5221                 dbg_status(fotg210, "fatal", status);
5222 dead:
5223                 usb_hc_died(hcd);
5224
5225                 /* Don't let the controller do anything more */
5226                 fotg210->shutdown = true;
5227                 fotg210->rh_state = FOTG210_RH_STOPPING;
5228                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5229                 fotg210_writel(fotg210, fotg210->command,
5230                                 &fotg210->regs->command);
5231                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5232                 fotg210_handle_controller_death(fotg210);
5233
5234                 /* Handle completions when the controller stops */
5235                 bh = 0;
5236         }
5237
5238         if (bh)
5239                 fotg210_work(fotg210);
5240         spin_unlock(&fotg210->lock);
5241         if (pcd_status)
5242                 usb_hcd_poll_rh_status(hcd);
5243         return IRQ_HANDLED;
5244 }
5245
5246 /* non-error returns are a promise to giveback() the urb later
5247  * we drop ownership so next owner (or urb unlink) can get it
5248  *
5249  * urb + dev is in hcd.self.controller.urb_list
5250  * we're queueing TDs onto software and hardware lists
5251  *
5252  * hcd-specific init for hcpriv hasn't been done yet
5253  *
5254  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5255  * to a (possibly active) QH, and the same QH scanning code.
5256  */
5257 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5258                 gfp_t mem_flags)
5259 {
5260         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5261         struct list_head qtd_list;
5262
5263         INIT_LIST_HEAD(&qtd_list);
5264
5265         switch (usb_pipetype(urb->pipe)) {
5266         case PIPE_CONTROL:
5267                 /* qh_completions() code doesn't handle all the fault cases
5268                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5269                  */
5270                 if (urb->transfer_buffer_length > (16 * 1024))
5271                         return -EMSGSIZE;
5272                 fallthrough;
5273         /* case PIPE_BULK: */
5274         default:
5275                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5276                         return -ENOMEM;
5277                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5278
5279         case PIPE_INTERRUPT:
5280                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5281                         return -ENOMEM;
5282                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5283
5284         case PIPE_ISOCHRONOUS:
5285                 return itd_submit(fotg210, urb, mem_flags);
5286         }
5287 }
5288
5289 /* remove from hardware lists
5290  * completions normally happen asynchronously
5291  */
5292
5293 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5294 {
5295         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5296         struct fotg210_qh *qh;
5297         unsigned long flags;
5298         int rc;
5299
5300         spin_lock_irqsave(&fotg210->lock, flags);
5301         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5302         if (rc)
5303                 goto done;
5304
5305         switch (usb_pipetype(urb->pipe)) {
5306         /* case PIPE_CONTROL: */
5307         /* case PIPE_BULK:*/
5308         default:
5309                 qh = (struct fotg210_qh *) urb->hcpriv;
5310                 if (!qh)
5311                         break;
5312                 switch (qh->qh_state) {
5313                 case QH_STATE_LINKED:
5314                 case QH_STATE_COMPLETING:
5315                         start_unlink_async(fotg210, qh);
5316                         break;
5317                 case QH_STATE_UNLINK:
5318                 case QH_STATE_UNLINK_WAIT:
5319                         /* already started */
5320                         break;
5321                 case QH_STATE_IDLE:
5322                         /* QH might be waiting for a Clear-TT-Buffer */
5323                         qh_completions(fotg210, qh);
5324                         break;
5325                 }
5326                 break;
5327
5328         case PIPE_INTERRUPT:
5329                 qh = (struct fotg210_qh *) urb->hcpriv;
5330                 if (!qh)
5331                         break;
5332                 switch (qh->qh_state) {
5333                 case QH_STATE_LINKED:
5334                 case QH_STATE_COMPLETING:
5335                         start_unlink_intr(fotg210, qh);
5336                         break;
5337                 case QH_STATE_IDLE:
5338                         qh_completions(fotg210, qh);
5339                         break;
5340                 default:
5341                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5342                                         qh, qh->qh_state);
5343                         goto done;
5344                 }
5345                 break;
5346
5347         case PIPE_ISOCHRONOUS:
5348                 /* itd... */
5349
5350                 /* wait till next completion, do it then. */
5351                 /* completion irqs can wait up to 1024 msec, */
5352                 break;
5353         }
5354 done:
5355         spin_unlock_irqrestore(&fotg210->lock, flags);
5356         return rc;
5357 }
5358
5359 /* bulk qh holds the data toggle */
5360
5361 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5362                 struct usb_host_endpoint *ep)
5363 {
5364         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5365         unsigned long flags;
5366         struct fotg210_qh *qh, *tmp;
5367
5368         /* ASSERT:  any requests/urbs are being unlinked */
5369         /* ASSERT:  nobody can be submitting urbs for this any more */
5370
5371 rescan:
5372         spin_lock_irqsave(&fotg210->lock, flags);
5373         qh = ep->hcpriv;
5374         if (!qh)
5375                 goto done;
5376
5377         /* endpoints can be iso streams.  for now, we don't
5378          * accelerate iso completions ... so spin a while.
5379          */
5380         if (qh->hw == NULL) {
5381                 struct fotg210_iso_stream *stream = ep->hcpriv;
5382
5383                 if (!list_empty(&stream->td_list))
5384                         goto idle_timeout;
5385
5386                 /* BUG_ON(!list_empty(&stream->free_list)); */
5387                 kfree(stream);
5388                 goto done;
5389         }
5390
5391         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5392                 qh->qh_state = QH_STATE_IDLE;
5393         switch (qh->qh_state) {
5394         case QH_STATE_LINKED:
5395         case QH_STATE_COMPLETING:
5396                 for (tmp = fotg210->async->qh_next.qh;
5397                                 tmp && tmp != qh;
5398                                 tmp = tmp->qh_next.qh)
5399                         continue;
5400                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5401                  * may already be unlinked.
5402                  */
5403                 if (tmp)
5404                         start_unlink_async(fotg210, qh);
5405                 fallthrough;
5406         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5407         case QH_STATE_UNLINK_WAIT:
5408 idle_timeout:
5409                 spin_unlock_irqrestore(&fotg210->lock, flags);
5410                 schedule_timeout_uninterruptible(1);
5411                 goto rescan;
5412         case QH_STATE_IDLE:             /* fully unlinked */
5413                 if (qh->clearing_tt)
5414                         goto idle_timeout;
5415                 if (list_empty(&qh->qtd_list)) {
5416                         qh_destroy(fotg210, qh);
5417                         break;
5418                 }
5419                 fallthrough;
5420         default:
5421                 /* caller was supposed to have unlinked any requests;
5422                  * that's not our job.  just leak this memory.
5423                  */
5424                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5425                                 qh, ep->desc.bEndpointAddress, qh->qh_state,
5426                                 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5427                 break;
5428         }
5429 done:
5430         ep->hcpriv = NULL;
5431         spin_unlock_irqrestore(&fotg210->lock, flags);
5432 }
5433
5434 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5435                 struct usb_host_endpoint *ep)
5436 {
5437         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5438         struct fotg210_qh *qh;
5439         int eptype = usb_endpoint_type(&ep->desc);
5440         int epnum = usb_endpoint_num(&ep->desc);
5441         int is_out = usb_endpoint_dir_out(&ep->desc);
5442         unsigned long flags;
5443
5444         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5445                 return;
5446
5447         spin_lock_irqsave(&fotg210->lock, flags);
5448         qh = ep->hcpriv;
5449
5450         /* For Bulk and Interrupt endpoints we maintain the toggle state
5451          * in the hardware; the toggle bits in udev aren't used at all.
5452          * When an endpoint is reset by usb_clear_halt() we must reset
5453          * the toggle bit in the QH.
5454          */
5455         if (qh) {
5456                 usb_settoggle(qh->dev, epnum, is_out, 0);
5457                 if (!list_empty(&qh->qtd_list)) {
5458                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5459                 } else if (qh->qh_state == QH_STATE_LINKED ||
5460                                 qh->qh_state == QH_STATE_COMPLETING) {
5461
5462                         /* The toggle value in the QH can't be updated
5463                          * while the QH is active.  Unlink it now;
5464                          * re-linking will call qh_refresh().
5465                          */
5466                         if (eptype == USB_ENDPOINT_XFER_BULK)
5467                                 start_unlink_async(fotg210, qh);
5468                         else
5469                                 start_unlink_intr(fotg210, qh);
5470                 }
5471         }
5472         spin_unlock_irqrestore(&fotg210->lock, flags);
5473 }
5474
5475 static int fotg210_get_frame(struct usb_hcd *hcd)
5476 {
5477         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5478
5479         return (fotg210_read_frame_index(fotg210) >> 3) %
5480                 fotg210->periodic_size;
5481 }
5482
5483 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5484  * because its registers (and irq) are shared between host/gadget/otg
5485  * functions  and in order to facilitate role switching we cannot
5486  * give the fotg210 driver exclusive access to those.
5487  */
5488
5489 static const struct hc_driver fotg210_fotg210_hc_driver = {
5490         .description            = hcd_name,
5491         .product_desc           = "Faraday USB2.0 Host Controller",
5492         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5493
5494         /*
5495          * generic hardware linkage
5496          */
5497         .irq                    = fotg210_irq,
5498         .flags                  = HCD_MEMORY | HCD_DMA | HCD_USB2,
5499
5500         /*
5501          * basic lifecycle operations
5502          */
5503         .reset                  = hcd_fotg210_init,
5504         .start                  = fotg210_run,
5505         .stop                   = fotg210_stop,
5506         .shutdown               = fotg210_shutdown,
5507
5508         /*
5509          * managing i/o requests and associated device resources
5510          */
5511         .urb_enqueue            = fotg210_urb_enqueue,
5512         .urb_dequeue            = fotg210_urb_dequeue,
5513         .endpoint_disable       = fotg210_endpoint_disable,
5514         .endpoint_reset         = fotg210_endpoint_reset,
5515
5516         /*
5517          * scheduling support
5518          */
5519         .get_frame_number       = fotg210_get_frame,
5520
5521         /*
5522          * root hub support
5523          */
5524         .hub_status_data        = fotg210_hub_status_data,
5525         .hub_control            = fotg210_hub_control,
5526         .bus_suspend            = fotg210_bus_suspend,
5527         .bus_resume             = fotg210_bus_resume,
5528
5529         .relinquish_port        = fotg210_relinquish_port,
5530         .port_handed_over       = fotg210_port_handed_over,
5531
5532         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5533 };
5534
5535 static void fotg210_init(struct fotg210_hcd *fotg210)
5536 {
5537         u32 value;
5538
5539         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5540                         &fotg210->regs->gmir);
5541
5542         value = ioread32(&fotg210->regs->otgcsr);
5543         value &= ~OTGCSR_A_BUS_DROP;
5544         value |= OTGCSR_A_BUS_REQ;
5545         iowrite32(value, &fotg210->regs->otgcsr);
5546 }
5547
5548 /*
5549  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5550  *
5551  * Allocates basic resources for this USB host controller, and
5552  * then invokes the start() method for the HCD associated with it
5553  * through the hotplug entry's driver_data.
5554  */
5555 int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg)
5556 {
5557         struct device *dev = &pdev->dev;
5558         struct usb_hcd *hcd;
5559         int irq;
5560         int retval;
5561         struct fotg210_hcd *fotg210;
5562
5563         if (usb_disabled())
5564                 return -ENODEV;
5565
5566         pdev->dev.power.power_state = PMSG_ON;
5567
5568         irq = platform_get_irq(pdev, 0);
5569         if (irq < 0)
5570                 return irq;
5571
5572         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5573                         dev_name(dev));
5574         if (!hcd) {
5575                 retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n");
5576                 goto fail_create_hcd;
5577         }
5578
5579         hcd->has_tt = 1;
5580
5581         hcd->regs = fotg->base;
5582
5583         hcd->rsrc_start = fotg->res->start;
5584         hcd->rsrc_len = resource_size(fotg->res);
5585
5586         fotg210 = hcd_to_fotg210(hcd);
5587
5588         fotg210->fotg = fotg;
5589         fotg210->caps = hcd->regs;
5590
5591         retval = fotg210_setup(hcd);
5592         if (retval)
5593                 goto failed_put_hcd;
5594
5595         fotg210_init(fotg210);
5596
5597         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5598         if (retval) {
5599                 dev_err_probe(dev, retval, "failed to add hcd\n");
5600                 goto failed_put_hcd;
5601         }
5602         device_wakeup_enable(hcd->self.controller);
5603         platform_set_drvdata(pdev, hcd);
5604
5605         return retval;
5606
5607 failed_put_hcd:
5608         usb_put_hcd(hcd);
5609 fail_create_hcd:
5610         return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev));
5611 }
5612
5613 /*
5614  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5615  * @dev: USB Host Controller being removed
5616  *
5617  */
5618 int fotg210_hcd_remove(struct platform_device *pdev)
5619 {
5620         struct usb_hcd *hcd = platform_get_drvdata(pdev);
5621
5622         usb_remove_hcd(hcd);
5623         usb_put_hcd(hcd);
5624
5625         return 0;
5626 }
5627
5628 int __init fotg210_hcd_init(void)
5629 {
5630         if (usb_disabled())
5631                 return -ENODEV;
5632
5633         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5634         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5635                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5636                 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5637
5638         pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5639                         hcd_name, sizeof(struct fotg210_qh),
5640                         sizeof(struct fotg210_qtd),
5641                         sizeof(struct fotg210_itd));
5642
5643         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5644
5645         return 0;
5646 }
5647
5648 void __exit fotg210_hcd_cleanup(void)
5649 {
5650         debugfs_remove(fotg210_debug_root);
5651         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5652 }